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We study effects of disorder on the low energy single-particle transport in a normal wire surrounded by a
superconductor. In addition to the Andreev diffusion that decreases with increase in the mean free path,, the
heat conductance is found to include the diffusive drift produced by a small particle-hole asymmetry, which
increases with increasing,. The conductance thus has a minimum as a function of, leading to a peculiar
reentrant localization as a function of the mean free path.
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I. INTRODUCTION

Transport phenomena in mesoscopic wires with dimen-
sions much less than the dephasing length have been studied
for several decades and are nowadays well understood(see
Refs. 1–3 for review). Depending on the ratio between the
wire lengthd and the mean free path of electrons, one can
separate different transport regimes. The ballistic regime
holds ford!,; here the conductance is given by the Sharvin
expression,G=se2/p"dNSh, whereNSh,skFad2 is the num-
ber of transverse modes,a is the wire radius,a!d, andkF is
the Fermi wave vector. For,!d, transport is diffusion con-
trolled and exhibits an ohmic behaviorG,se2/p"dNSh, /d.
Upon the further decrease in the ratio, /d, the ohmic depen-
dence breaks down due to the localization effects: the con-
ductance decays exponentially4 whend.NSh,.

This textbook picture holds if the transverse confinement
of the electrons inside the wire is caused by an insulating gap
in the surrounding material, which results in elastic scatter-
ing of electrons at the wire walls with large momentum
transfer (normal reflections). In the present paper we con-
sider another realization of a normal-metal wire conductor
where the electrons are confined by a surrounding supercon-
ducting material. The superconducting gapD outside the nor-
mal wire suppresses to zero the density of states(DOS) of
single-particle excitations for energiese,D, thus localizing
them in the transverse direction within the wire. These con-
fined states are essentially determined by the particle-hole
Andreev reflections with low momentum transfer at the
superconducting/normal-metal(SN) boundaries. If the nor-
mal reflection processes at the SN boundaries can be ig-
nored, we refer to such a normal-metal conducting region
insidea superconducting environment as an “Andreev wire.”
An Andreev wire can be connected through bulk normal-
metal leads to an external measuring circuit. Note that our
definition of Andreev wire differs from that used, e.g., in
Ref. 5 where it was applied for a normal conductor in an
insulating environment,connectedto superconducting leads.
A simple way to create Andreev wires is to introduce vortex
lines in a type II superconductor or to drive a type I super-
conductor into an intermediate filamentary state by applying
a magnetic field. Andreev wires can be manufactured artifi-

cially in the form of normal channels in a superconducting
matrix, using modern nano-fabrication techniques also em-
ployed for producing a wider class of hybrid SN structures
such as Andreev interferometers6 and billiards.7 Experimen-
tally, the main distinction between an Andreev wire and the
usual conductor is that the single electron transport in the
Andreev wire is to be probed rather by the measurements of
thermal conductance because the single electron part of the
charge current is short circuited by the supercurrent.

As shown in Refs. 8 and 9, in the ballistic limit,@d,
Andreev processes suppress the single electron transport for
all quasiparticle trajectories except for those which have mo-
menta almost parallel to the wire thus avoiding Andreev re-
flection at the walls. The particles confined due to Andreev
reflections also participate in the transport but through a slow
drift along the transverse modes(Andreev states) with the
group velocityvg="−1]«kz

/]kz,e /pF much smaller thanvF.
This Landauer-type drift contribution is the lower limit of
conductance reached as the contribution of freely traversing
trajectories decreases and nearly vanishes with increasingd.
In total, the electronic heat conductance due to these two
mechanisms is much lower than what could be derived from
the Wiedemann-Franz law using the Sharvin conductance of
a normal conductor: The effective number of conducting
modesNeff="k /T is much smaller thanskFad2. The conclu-
sion of the suppression of the single electron transport in
clean systems is in good agreement with experiments on the
heat conductivity in type I and type II superconductors in the
direction of magnetic field.10,11

In the present paper we investigate the effects of a weak
disorder introduced by impurity scattering on the low energy
transport withe!D in an Andreev wire of a radiusa much
larger than the coherence lengthj. We consider clean wires
,@a and neglect inelastic processes assuming,e@, where
,« is the inelastic mean free path. To elucidate our main
results we first outline briefly what is known for the transport
along an Andreev wire. Let us consider a quasiparticle
propagating within the wire along a trajectory that bounces
from the NS walls at both its ends. Neglecting the slow drift,
the distributions of particles and holes are equal at the wall
due to the Andreev reflection. Without disorder-induced scat-
tering, the distributions still remain equal throughout the
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wire, thus the single-particle transport associated with these
trajectories vanishes. Disorder causes the distributions of
particles and holes to deviate from each other by an amount
proportional to the probability of scattering,a/,, accumu-
lated on their way in between the two walls. In the presence
of a temperature difference at the ends of the wire, the driv-
ing force on the trajectory is proportional tosa/ddsT1−T2d,
thus the thermal conductance becomeskA=sT/"dNA, where
the effective number of modes is

NA = ANShsa2/,dd. s1d

The counterintuitive behavior of the single-particle conduc-
tancekA which increaseswith decreasing, was first pre-
dicted by Andreev12 (see also Ref. 13). The coefficientA in
Eq. (1) appears to be a slow function of,: A, lns, /ad. For
such “Andreev diffusion,” disorder witha!,!d opens new
single-particle conducting modes which were blocked by An-
dreev reflections in the ballistic limit and thus stimulates the
single-particle transport. This differs from the disorder ef-
fects in normal-metal/insulator/superconductor systems
where disorder opens two-particle tunneling processes for
electrical conductance, see Ref. 3 for review. The conduc-
tancekA reaches its maximum when the mean free path de-
creases down to,,a; it further transforms into kD
=sT/"dND for a dirty wire ,!a where14

ND , nFa2D/d , NSh,/d. s2d

Here nF is the normal-state DOS at the Fermi level, andD
=vF, /3 is the diffusion coefficient.

Upon increasing the mean free path, Eq.(1) transforms
into the ballistic expression8 k~d−2 with a number of modes

NA , NShsa2/d2d s3d

for ,@d. The number of modes decreases for longer wires
and becomesNA,1 for d*askFad. According to the crite-
rion of Ref. 4 a decrease inN down toN,1 leads to local-
ization of the transport. However, the ballistic transport de-
termined by Eq.(3) is shunted by the quasiparticle drift
along the Andreev states with a group velocityvg. The drift
contribution in the limit of very long, is determined by a
Landauer-type expression9

NL = NL
bal , NShsvg/vFd. s4d

For typical valueskFa,103 andvg/vF,T/EF,10−3 we ob-
tain a macroscopic numberNL

bal,103 of conducting modes.
Therefore, the total number of modesNL+NA remains large:
the transport is delocalized even for very long wires,
d@askFad, whose ballistic conductance is already switched
off, NA,1. Localization of the transport for very clean wires
may occur only for very low temperatures such that the An-
dreev states are not populated.

In this paper we find that disorder introduces new features
into the transport by modifying the single-particle drift along
the Andreev states. The effective mean free path that controls
the drift appears to be,eff=vgt, i.e, considerably shorter than
the usual mean free path,=vFt where t is the impurity
mean free time: the drifting particles bounce many times
from the wire sidewalls and experience considerably

more collisions with impurities than those particles which
fly freely through the wire. The thermal conductance
kL=sT/"dNL associated with the disorder-modified drift is
found to beproportional to the mean free path for,eff!d

NL , nFa2Deff/d , NShsvg/vFd2s,/dd, s5d

whereDeff=vg,eff=vg
2t is the effective diffusion coefficient

much smaller thanD that appears in Eq.(2). This drift satu-
rates at the ballistic expression Eq.(4) only for very long,
when,eff@d.

The total heat conductancek=sT/"dsNA+NLd includes
the Andreev diffusion decreasing as,−1 and the diffusive
drift that increases with increasing,. Equations(1)–(4) are
illustrated in Fig. 1 as functions of,. If d@asvF /vgd, the
number of modes has a minimum

Nmin , NShsa/ddsvg/vFd

at ,min,asvF /vgd. Since the drift contribution is reduced by
disorder, the minimum number of effective modes can now
be substantially lower than that in the limit of long,. For
long wires, the effective number of modes can become
Nmin,1 which may lead to localization of the transport.4

Thus, varying the mean free path around,min we can obtain
a peculiarreentrant localization: for a long enough Andreev
wire the quasiparticles may become localized not only in
a dirty limit ,!a but also for a quite long,@a in such a
way that the conduction opens again through either the
quasiparticle drift for longer, or through the Andreev diffu-
sion for shorter,. This occurs for a wire lengthd.dc where
dc,aNShsvg/vFd,NL

bala. In contrast to the localization
criteriond.NSh, for usual wires4 mentioned earlier the new
condition does not contain, explicitly. The condition
dc@asvF /vgd required for self-consistency yieldssvg/vFd
3skFad@1 which is equivalent to the assumption that the
Andreev states are well populated(see below).

II. MODEL

To develop a more quantitative description we use a qua-
siclassical approach modified to account for the trajectory
drift along the Andreev wire. The spectrum of transverse
motion in a superconductor-normal-superconductor structure
is15

FIG. 1. Number of conducting modes(upper curve) normalized
to that in a Sharvin contact,n=N/NSh, as a function of, interpo-
lated according to Eqs.(1)–(4) for the wire lengthd@asvF /vgd. The
gray area at the bottom is the localization region,N,1 correspond-
ing to nloc,skFad−2.
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en =
"vF

2xc
Sn +

1

2
DÎ1 −

pz
2

pF
2 . s6d

Herepz=pF cosu and 2xc,a is the length of the projection
of the trajectory section between two superconducting walls
onto the plane perpendicular to the wire axis(thez axis), see
Fig. 2. The particular gap profile near the wire wall is not
relevant as long asa@j. Due to apz dependence of the
energy, particles perform a slow drift alongz with a group
velocity

vg =
]en

]pz
= − vF

en

2EF

cosu

sin2 u
. s7d

The group velocity can also be obtained16 by considering
particle and hole trajectories, Fig. 2. The momentum along
x is px

±=p'±me /p' for particles and holes, where
p'=ÎpF

2 −pz
2=pFsinu. These trajectories have the direction

angles tanu±=px
± /pz with respect to thez axis such

that sinsu+−u−d=se /eFdcotu. The velocity along the trajec-
tories is

v± = m−1Îspx
±d2 + pz

2 = vF ± e/pF. s8d

A particle on trajectory(1) in Fig. 2 with the coordinates
x=s+ sinu+, z=z0+s+ cosu+, wheres+ is the distance along
the trajectory, is Andreev reflected at the wall and returns
back along the hole trajectory(2) with the coordinatesx
=s− sinu−, z=z08+s− cosu−. Both s± are measured from the
wire axis. The intersection with the wall has the coordinates
x=xc and z=z0+xc cotu+=z08+xc cotu−. The drift velocity
defined asvg=vFsinusz08−z0d /2xc coincides with Eq.(7).
This approach is valid for wide wiresa@j where the driftzc
is much larger than the widthkF

−1 of the wave packet. Since
zc,asvg/vFd, this requiressvg/vFdskFad@1 which is equiva-
lent to the conditione@e0, where e0 is the lowest level
energy in Eq.(6).

III. KINETIC EQUATIONS

For e@e0 the DOS in the normal region coincides with
that in the normal state,nF. For particle and hole distribu-
tions

f+se,pd = np,e, f−se,pd = 1 −n−p,−e,

respectively, the Boltzmann equation takes the form

±v±
]f±

]s
= −

1

t
sf± − kf±ld. s9d

Herek¯l denotes averaging over the momentum directions.
In both the upper-sign and lower-sign equations, the distance
s is measured in the direction of +p.

Since all particles are Andreev reflected as holes, the
single-particle current through the wire sidewalls vanishes.
Using mv± sinu±=px

± we put at the walls

v+ sinu+f+ = v− sinu−f−. s10d

The kinetic Eq.(9) on the trajectory(1) gives

f+ss+d = f+s0de−s+/,+ + ,+
−1e−s+/,+E

0

s+

kf+ss+8dles+8/,+ds+8 .

s11d

The function f+s0d is taken atx=0, z=z0. To get the corre-
sponding expression on trajectory(2) one substitutesf+, s+,
,+, and z0 with f−, s−, ,−, and z08, respectively. Putting
s+=xc/sinu+ ands−=xc/sinu− for f+ and f−, respectively, we
insert the result into the boundary condition Eq.(10). The
distributions at the trajectories(3) and(4) for s,0 are found
by replacingz0↔z08. The boundary condition for them is
applied ats+=−xc/sinu+ for f+ and ats−=−xc/sinu− for f−.

To solve Eq.(11) we assume thatkfsx,zdl depends only
on z

kfssdl = kfs0dl + scosu
]kfl
]z

.

Within the leading terms invg/vF the equations for the dis-
tribution functions at the wire axis have the form

f2 =
vg

vF cosu cosh2 ssc/,d
sf1 − kf1ld +

vg

vF cosu coshssc/,d
kf1l

−
1 − coshssc/,d

coshssc/,d Fkf2l − , cosu
]kf1l
]z

G s12d

and

vguscu
vF

F ]f1

]z
+

1 − coshssc/,d
coshssc/,d

]kf1l
]z

G = − tanhS uscu
,
Dsf1 − kf1ld.

s13d

We denotesc=xc/sinu and introduce

f1 = − sf+ + f−d, f2 = − sf+ − f−d s14d

in accordance with the definitions used in the theory of
superconductivity.17 The functionsf1 and f2 are nearly con-
stant along the trajectory within the wire.

For anglesu@u, whereu,,a/,!1 these equations re-
duce to

f2 =
vg

vF cosu
f1 − cosu

sc
2

2,

]kf1l
]z

, s15d

FIG. 2. Trajectories for particles(1), (3) and holes(2), (4).
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,
vg

vF

]f1

]z
= − sf1 − kf1ld. s16d

Analysis of Eq.(12) shows that for anglesu!u,, the distinc-
tion between the usual and the Andreev diffusion disappears,
and f2=kf2l−, cosus]kf1l /]zd while the counterpart of the
first term in Eq.(15) proportional tosvg/vFdf1 decreases ex-
ponentially ase−2u,/u.

The first term in Eq.(15) describes the drift along the
Andreev states with the velocityvg. The second term is the
Andreev diffusion.12 Equation (16) introduces an effective
mean free path,eff=vgt much shorter than the usual,. In the
very clean limit,eff@d, the distributionf1 is constant along
the wire and

f2 =
vg

vF cosu
f1. s17d

In the most practical limit when,eff!d,

f1 = kf1l − vgt
]kf1l
]z

s18d

and

f2 = − F vg
2,

vF
2 cosu

+ cosu
sc

2

2,
G ]kf1l

]z
+

vg

vF cosu
kf1l.

s19d

The first term in brackets describes the disorder-modified
drift. Its relative magnitude with respect to the Andreev dif-
fusion (the second term) is of the order ofsvg/vFd2s, /scd2,
i.e., much larger than nonquasiclassical corrections of the
order se /EFd2 to the usual diffusion. We neglect the latter
corrections in what follows.

IV. ENERGY CURRENT

The energy current has the form17

IE = − nFvFE d2r E dVp

4p
E

−`

+`

cosuef2de. s20d

For very long mean free path,eff@d the distribution is de-
termined by Eq.(17), and we recover the Landauer formula
derived in Ref. 9

IE = − nFE d2r E dVp

4p
E

−`

+`

«vgf1d«. s21d

With f1=tanhse /2T1d−1 for vg.0 and f1=tanhse /2T2d−1
for vg,0 we arrive at Eq.(4) for the heat conductance.

Assuming that the group velocity is independent ofu we
obtain a qualitative behavior described in the introduction.
Indeed, for,eff!d, the distribution obeys Eq.(19) where
the last term does not contribute to the current. The current
becomesI«=ksT1−T2d with the total thermal conductance
k=sT/"dN=sT/"dsNA+NLd given by Eqs.(1) and (5).

This simplified picture has to be modified, however, due
to a rapid divergence ofvg at small angles. This leads to a

more complicated behavior of the drift contributionNL to the
heat conduction as a function of temperature and of the mean
free path characterized by different power laws in different
regions of, andT. To take into account the singular behav-
ior of vg at small angles it is useful to introduce two cutoff
angles. We define the angleumin such thatvgsumind,vF, i.e.,
umin,ÎT/EF. It marks the absolute minimum angle since the
group velocity vg can under no circumstances exceedvF.
Another angleud,a/d is the one below which the trajectory
traverses freely through the wire and is not Andreev reflected
from the wall. These trajectories contribute to thed−2 depen-

dence of the conductance. We denoteũ=maxhumin,udj. In
addition we define the angleuc such that,vgsucd,vFd, i.e.

sin2 uc ,
e

EF

,

d
.

For u!uc the term with the derivative in Eq.(16) dominates,
and the distribution corresponds to that for a ballistic drift,
Eq. (17). For u@uc the distribution is determined by Eq.
(19).

The integral over angles in Eq.(20) can be split into two
regions: one is for trajectories that are almost parallel to the

wire axis ũ,u,uc, p−uc,u,p− ũ with the distribution
as in Eq.(17), and the other is for large anglesuc,u,p
−uc with the distribution as in Eq.(19). Therefore, calculat-
ing the contribution of the first term in Eq.(15) to the energy
current we get by the order of magnitude

IL , − NShE df1edeFE
ũ

uc

e−2u,/u uvgu
vF

udu

+E
uc

p/2

e−2u,/u ,vg
2

vF
2d

uduG , s22d

wheredf1=tanhse /2T1d−tanhse /2T2d. The factorse−2u,/u ac-
count for the exponential decay of the drift contribution for

small anglesu!u,. This equation holds ifuc.ũ. In the op-

posite limit, uc,ũ, the first term disappears while the angle

uc in the second term is replaced withũ. Consider the total
number of channelsN as a function of increasing,.

I. Intermediate regime:a,,,d. Here uc,umin thus
there are no trajectories with ballistic drift. We find for the
ratio nL=NL /NSh

nL ,
T2,

EF
2d

1

maxhumin
2 ,u,

2j
. s23d

II. Clean limit: d!,!dsEF /Td, such thatuc!1. One can
separate two cases:(i) long wires, d@aÎEF /T, such that
uc.umin.ud

nL ,
T

EF
lnS uc

umin
D ,

T

EF
lnS,

d
D

and (ii ) short wires,d!aÎEF /T, such thatud.umin

nL ,
T

EF
lnF1 +

uc

ud
G ,

T

EF
lnF1 +

T,d

EFa2G .
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III. Superclean limit:,@dsEF /Td, uc→p /2. The Land-
auer drift saturates at its ballistic limit

nL ,
T

EF
lnfminhEF/T,d2/a2jg. s24d

V. DISCUSSION

Using these estimates, two regimes of long and short
wires can be distinguished.

A. Long wiresd@aÎEF /T.

a , , , aÎEF/T: nL ,
T2

EF
2

,3

a2d
, s25d

aÎEF/T , , , d: nL ,
T

EF

,

d
, s26d

d , , , dsEF/Td: nL ,
T

EF
ln

,

d
, s27d

dsEF/Td , ,: nL ,
T

EF
ln

EF

T
. s28d

Therefore, the full saturation at the,-independent Landauer-
type drift conduction Eq.(21) occurs when,eff,sT/EFd,
becomes larger thand.

B. Short wiresd!aÎEF /T.

a , , , d: nL ,
T2

EF
2

,3

a2d
, s29d

d , , , d
EF

T
: nL ,

T

EF
lnF1 +

T,d

EFa2G , s30d

d
EF

T
, ,: nL ,

T

EF
ln

d

a
. s31d

To summarize: As, decreases, the breakdown of the Lan-
dauer formula for an Andreev wire Eq.(24) begins at,
&dsEF /Td with a decrease in the logarithm. However, since
the group velocity diverges at small angles, the Landauer-
like formula survives down to shorter,. If d!asEF /Td1/2,
the logarithm is decreased from Eq.(31) to Eq. (30). For ,
& sa2/ddsEF /Td, the logarithmic term disappears completely,
and the Landauer behavior is replaced with a diffusive drift
along the bound states followed by Eq.(29) for yet shorter
,!d. If d@asEF /Td1/2, the transition occurs from Eq.(27)
or (28) through Eq.(26) to Eq. (25).

For long wiresd@aÎEF /T we can get areentrant local-
ization for a,,,d. Indeed, the total number of modes in-
cluding the Andreev diffusion is in this case

N , NShF a2

,d
ln

,

a
+

T,

EFd
minH T,2

EFa2,1JG .

The total conduction reaches its minimum

Nmin , NShsa/ddÎT/EF

at ,min,aÎEF /T. The reentrant localization is possible for
wire lengths longer thandc,askFad2ÎT/EF. The condition
dc@aÎEF /T requiressT/EFdskFad2@1 which is always sat-
isfied for T*e0. Since,eff anddc areT dependent, the pre-
dicted localization regime in a wire with a given length and
disorder can be observed by varying the temperature.

For short wires,d!aÎEF /T the number of conducting
channels has a minimum for,,d. This regime is similar to
one discussed in the Introduction for ballistic wires: The
minimum is determined by free traversing trajectories, Eq.
(3). The localization can appear ifd.dc wheredc,askFad.
This length should be smaller thanasEF /Td1/2 which requires
very low temperaturessT/EFdskFad2!1. The corresponding
temperatures are much lower than the distance between the
energy levels in the wire"vF /a. At these temperatures the
Landauer drift is already localized.

Note that the localization effects discussed above for ar-
tificially fabricated Andreev wires can be reduced by normal
scattering at the wire boundaries if there is a mismatch of
Fermi velocities or possible potential barriers. However, we
expect that the nonmonotonic, dependence of the conduc-
tance should hold as long as the normal reflection is small.

To conclude, we have developed a theory of single elec-
tron transport and reentrant localization in clean Andreev
wires. Our results could stimulate experimental research of
these phenomena in the mixed or intermediate state, as well
as in hybrid SN structures.
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