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Reentrant localization of single-particle transport in disordered Andreev wires
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We study effects of disorder on the low energy single-particle transport in a normal wire surrounded by a
superconductor. In addition to the Andreev diffusion that decreases with increase in the mean figehmath
heat conductance is found to include the diffusive drift produced by a small particle-hole asymmetry, which
increases with increasing. The conductance thus has a minimum as a functiofi &fading to a peculiar
reentrant localization as a function of the mean free path.
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[. INTRODUCTION cially in the form of normal channels in a superconducting
matrix, using modern nano-fabrication techniques also em-
Transport phenomena in mesoscopic wires with dimenployed for producing a wider class of hybrid SN structures
sions much less than the dephasing length have been studisdch as Andreev interferomet@iand billiards’ Experimen-
for several decades and are nowadays well understemel  tally, the main distinction between an Andreev wire and the
Refs. 1-3 for review Depending on the ratio between the usual conductor is that the single electron transport in the
wire lengthd and the mean free path of electrofimne can Andreev wire is to be probed rather by the measurements of
separate different transport regimes. The ballistic regiméhermal conductance because the single electron part of the
holds ford< ¢; here the conductance is given by the Sharvincharge current is short circuited by the supercurrent.
expressionG=(€?/ 7#i)Ng;, whereNg,~ (kea)? is the num- As shown in Refs. 8 and 9, in the ballistic limft=>d,
ber of transverse modes,s the wire radiusa<d, andkz is  Andreev processes suppress the single electron transport for
the Fermi wave vector. Fat<d, transport is diffusion con- all quasiparticle trajectories except for those which have mo-
trolled and exhibits an ohmic behavi&~ (€?/ h)Ngyf / d. menta almost parallel to the wire thus avoiding Andreev re-
Upon the further decrease in the rafitd, the ohmic depen- flection at the walls. The particles confined due to Andreev
dence breaks down due to the localization effects: the coneflections also participate in the transport but through a slow
ductance decays exponentidliyhend> Ngf. drift along the transverse modéandreev stateswith the
This textbook picture holds if the transverse confinemengroup velocityv,=%""de, / ok, ~ €/ p- much smaller tham.
of the electrons inside the wire is caused by an insulating gajpphis Landauer-type drift contribution is the lower limit of
in the surrounding material, which results in elastic scatterconductance reached as the contribution of freely traversing
ing of electrons at the wire walls with large momentum trajectories decreases and nearly vanishes with incredsing
transfer(normal reflections In the present paper we con- In total, the electronic heat conductance due to these two
sider another realization of a normal-metal wire conductormechanisms is much lower than what could be derived from
where the electrons are confined by a surrounding supercothe Wiedemann-Franz law using the Sharvin conductance of
ducting material. The superconducting gaputside the nor- a normal conductor: The effective number of conducting
mal wire suppresses to zero the density of sta®S) of  modesNg;=%«/T is much smaller thaitkea)?. The conclu-
single-particle excitations for energies< A, thus localizing sion of the suppression of the single electron transport in
them in the transverse direction within the wire. These conelean systems is in good agreement with experiments on the
fined states are essentially determined by the particle-holeeat conductivity in type | and type Il superconductors in the
Andreev reflections with low momentum transfer at thedirection of magnetic field®1:
superconducting/normal-met&6N) boundaries. If the nor- In the present paper we investigate the effects of a weak
mal reflection processes at the SN boundaries can be iglisorder introduced by impurity scattering on the low energy
nored, we refer to such a normal-metal conducting regionransport withe<A in an Andreev wire of a radiua much
insidea superconducting environment as an “Andreev wire.”larger than the coherence lengthWe consider clean wires
An Andreev wire can be connected through bulk normal-¢>a and neglect inelastic processes assunfipg ¢ where
metal leads to an external measuring circuit. Note that ouf, is the inelastic mean free path. To elucidate our main
definition of Andreev wire differs from that used, e.g., in results we first outline briefly what is known for the transport
Ref. 5 where it was applied for a normal conductor in analong an Andreev wire. Let us consider a quasiparticle
insulating environmentonnectedo superconducting leads. propagating within the wire along a trajectory that bounces
A simple way to create Andreev wires is to introduce vortexfrom the NS walls at both its ends. Neglecting the slow drift,
lines in a type Il superconductor or to drive a type | super-the distributions of particles and holes are equal at the wall
conductor into an intermediate filamentary state by applyinglue to the Andreev reflection. Without disorder-induced scat-
a magnetic field. Andreev wires can be manufactured artifitering, the distributions still remain equal throughout the
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wire, thus the single-particle transport associated with these v VgV
trajectories vanishes. Disorder causes the distributions of

particles and holes to deviate from each other by an amount N

proportional to the probability of scattering/¢, accumu- a/d A

lated on their way in between the two walls. In the presence Vonin [ \

of a temperature difference at the ends of the wire, the driv- ‘—é TN,

ing force on the trajectory is proportional ta/d)(T,-T,),

thus the thermal conductance becomgs (T/%)N,, where Vioo

the effective number of modes is
Na = ANg(a?/¢d). (1)

a awhvy) d | d(velvg)

o ) ) ) FIG. 1. Number of conducting modéspper curvg normalized
The counterintuitive behavior of the single-particle conduc+yo that in a Sharvin contack=N/Ng;, as a function of¢ interpo-

tance ka Which increaseswith decreasingt was first pre-  |ated according to Eqg1)—(4) for the wire lengthd>a(ve/vg). The
dicted by Andree¥? (see also Ref. 13The coefficientA in  gray area at the bottom is the localization regiNim; 1 correspond-
Eqg. (1) appears to be a slow function éf A~In(¢/a). For  ing to v~ (kpa)™2

such “Andreev diffusion,” disorder wita<< ¢ <d opens new

single-particle conducting modes which were blocked by An-more collisions with impurities than those particles which
dreev reflections in the ballistic limit and thus stimulates thefjy freely through the wire. The thermal conductance
single-particle transport. This differs from the disorder Ef‘KL:(T/h)NL associated with the disorder-modified drift is

fects in normal-metal/insulator/superconductor systems, nd to beproportional to the mean free path fdt.«<d
where disorder opens two-particle tunneling processes for

electrical conductance, see Ref. 3 for review. The conduc- N, ~ vra?Deg/d ~ No(vg/vg)?(€/d), (5
tancex, reaches its maximum when the mean free path d
creases down tof~a; it further transforms into«p
=(T/#)Np for a dirty wire ¢ <a wheré*

€where Deﬁ:vgeeﬁ:uzr is the effective diffusion coefficient
much smaller thaD that appears in Eq2). This drift satu-
rates at the ballistic expression Edg) only for very long¢
Np ~ v¢a?D/d ~ Ngif/d. (2) whenfer>d. _
. . The total heat conductance=(T/#)(Np+N,) includes
Here v is the normal-state DOS at the Fermi level, @dd  the Andreev diffusion decreasing #s! and the diffusive
=vet/3 is the diffusion coefficient. drift that increases with increasiny Equations(1)~(4) are

_Upon increasing the mean free path, Ef) transforms jjjystrated in Fig. 1 as functions of. If d>a(ve/vy), the
into the ballistic expressidneecd=? with a number of modes  mber of modes has a minimum

Na ~ Nsy(a®/d?) (3 Nimin ~ Nsr(@/d)(vg/vg)

for ¢>d. The number of modes decreases for longer wiregt €min~a(ve/vg). Since the drift contribution is reduced by
and becomedly~1 for d=a(kra). According to the crite-  disorder, the minimum number of effective modes can now
rion of Ref 4 a decrease iN down toN~1 leads to local- e substantially lower than that in the limit of lorfg For
ization of the transport. However, the ballistic transport dedong wires, the effective number of modes can become
termined by Eq.(3) is shunted by the quasiparticle drift N.,,~1 which may lead to localization of the transpbrt.
along the Andreev states with a group veloaity The drift ~ Thus, varying the mean free path aroufjg, we can obtain
contribution in the limit of very long¢ is determined by a a peculiareentrant localizationfor a long enough Andreev
Landauer-type expressidn wire the quasiparticles may become localized not only in
_ bal a dirty limit £ <a but also for a quite long>a in such a

NL =N~ Nsy(vg/ve). ) way that the conduction opens again through either the
For typical valuesga~ 10° andvy/ve ~ T/Eg~ 10 we ob- quasiparticle drift for longef or through the Andreev diffu-
tain a macroscopic numb&®~ 10° of conducting modes. Sion for shorter. This occurs for a wire lengt> d. where
Therefore, the total number of modiis+N, remains large:  de~aNsy(vg/ve) ~NP*a. In contrast to the localization
the transport is delocalized even for very long wires,criteriond>Ng for usual wire$ mentioned earlier the new
d>a(kga), whose ballistic conductance is already switchedcondition does not contairf explicitly. The condition
off, No~ 1. Localization of the transport for very clean wires dc>a(ve/vg) required for self-consistency yield®y/ve)
may occur only for very low temperatures such that the An-X(kg@)>1 which is equivalent to the assumption that the
dreev states are not populated. Andreev states are well populatéste below.

In this paper we find that disorder introduces new features
into the transport by modifying the single-particle drift along
the Andreev states. The effective mean free path that controls To develop a more quantitative description we use a qua-
the drift appears to bé.z=vy7, i.e, considerably shorter than siclassical approach modified to account for the trajectory
the usual mean free patt=vge7 where 7 is the impurity  drift along the Andreev wire. The spectrum of transverse
mean free time: the drifting particles bounce many timesmotion in a superconductor-normal-superconductor structure
from the wire sidewalls and experience considerablyis®

Il. MODEL
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z f.(ep) = Np. e f(ep)=1- N_p-e
respectively, the Boltzmann equation takes the form

f, 1
022 == 21~ (L), ©)
S T

I+

Here(:--) denotes averaging over the momentum directions.
In both the upper-sign and lower-sign equations, the distance
s is measured in the direction ofp+

Since all particles are Andreev reflected as holes, the
single-particle current through the wire sidewalls vanishes.
Using mv. sin 6,=p; we put at the walls

o 0 ¥ ¥ v, sin6,f,=v_sing_f_. (10
FIG. 2. Trajectories for particled), (3) and holeg2), (4). The kinetic Eq.(9) on the trajectory(1) gives
S, .
hoe( 1 o2 f(s) = £.(0)e ™/ + (et f (Fu(s))eds,.
€=—(n+= 1-=. (6) 0
2X; 2 Pr
(11)

Herep,=pg cosd and X.~a is the length of the projection
of the trajectory section between two superconducting wall
onto the plane perpendicular to the wire aftlse z axis), see
Fig. 2. The particular gap profile near the wire wall is not
relevant as long as>¢. Due to ap, dependence of the
energy, particles perform a slow drift alorzgwith a group

Jhe functionf,(0) is taken atx=0, z=z, To get the corre-
sponding expression on trajectof®) one substitutes,, s,,
€., and z5 with f_, s, £_, and z,, respectively. Putting
s, =X./sin 8, ands_=x./sin 6_ for f, andf_, respectively, we
insert the result into the boundary condition Ed0O). The
distributions at the trajectorig8) and(4) for s<0 are found

velocit
Y by replacingzy< z,. The boundary condition for them is
_Jen_ & COsO ) applied ats,=-x./sin 6, for f, and ats_=-x./sin 6_ for f_.
Vg— ap, UFZEF ik 9" To solve Eq.(11) we assume thatf(x,z)) depends only
onz

The group velocity can also be obtaif®dy considering
particle and hole trajectories, Fig. 2. The momentum along _ @
x is py=p,+me/p, for particles and holes, where (f(s))=(f(0)) +scoso gz
P, =\pE-p2=pesin 6. These trajectories have the direction
angles tard,=p,/p, with respect to thez axis such
that sin(0,—0-)=(e/ eg)cot 6. The velocity along the trajec-

Within the leading terms im4/ve the equations for the dis-
tribution functions at the wire axis have the form

tories is f Vg (= (1) Vg )
— = - +
ve=m (P52 + p2 = v + elpe. (8) 2 v C0s6 costt (sy/€) tot vg C0sO coshs/€) L
A particle on trajectory(1) in Fig. 2 with the coordinates _ Lsmscm{<f2>_€ Coseﬂ} 12)
X=s, sin 0., z=zy+s, coséh,, wheres, is the distance along cosh(s/€) 0z

the trajectory, is Andreev reflected at the wall and returns d

back along the hole trajector§?) with the coordinatesc

=s_sinf-, z=zy+s_ cosé_. Both s, are measured from the Ug|sc| of;  1- coslis/€) (f) X

wire axis. The intersection with the wall has the coordinates™, | ' * coshs/t) iz == tani =~ (fr=(f).
X=Xc and z=zy+x. cot6,=zy+x. cotd_. The drift velocity
defined asvy=vesin 6(zy—2z)/ 2%, coincides with Eq.(7). (13
This approach is valid for wide wires> £ where the drifiz;  \we denotes,=x./sin 6 and introduce

is much larger than the widtk);1 of the wave packet. Since

z.~ a(vy/ve), this requiresvy/ve)(kea) > 1 which is equiva- fi=—(f,+f), fo=-(f,-f) (14)
lent to the conditione> ¢, where ¢, is the lowest level
energy in Eq(6).

in accordance with the definitions used in the theory of
superconductivity! The functionsf, and f, are nearly con-
stant along the trajectory within the wire.

lIl. KINETIC EQUATIONS ] Fort angles#> 6, where 6, ~al{ <1 these equations re-
uce to
For e> ¢, the DOS in the normal region coincides with
that in the normal stateyr. For particle and hole distribu- £ = Ug £ cos&iﬁ(fﬁ (15)
: 2= 1 ’
tions Ug COS6 2¢ oz
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_gﬂfl more complicated behavior of the drift contributiblp to the
4 z (f = (f). (16) heat conduction as a function of temperature and of the mean
vF free path characterized by different power laws in different
Analysis of Eq.(12) shows that for angleg< 6, the distinc-  regions of¢ andT. To take into account the singular behav-
tion between the usual and the Andreev diffusion disappearsor of vy at small angles it is useful to introduce two cutoff
and f,=(f,)—¢ cos6((f)/ 9z) while the counterpart of the angles. We define the angtg,;, such thatvg(emm) VR, i€,
first term in Eq.(15) proportional to(v,/ve)f; decreases ex- 6~ \T/Eg. It marks the absolute minimum angle since the
ponentially ags™2%?, group velocityvy can under no circumstances excagd
The first term in Eq.(15) describes the drift along the Another angledy~a/d is the one below which the trajectory
Andreev states with the velocityy,. The second term is the traverses freely through the wire and is not Andreev reflected
Andreev diffusiont? Equat|on(16) introduces an effective from the wall. These trajectories contribute to thé depen-

mean free patlﬂeff UgT much shorter than the usu@lIn the dence of the conductance. We den?&ema){gmm, ed} In

very clean limit{.>d, the distributionf, is constant along  gqdition we define the angle. such thatfvy(6,) ~ved, i.e.
the wire and

v Sir 6, ~ ——.
f,=—4—f,. 17 ¢ Eqd
27 pecosh 7 F

For #< 6. the term with the derivative in Eq16) dominates,

In the most practical limit wheriey<d, and the distribution corresponds to that for a ballistic drift,

ofy) Eq. (17). For 6> 6, the distribution is determined by Eg.
fi=(f) —vgr—— pe 18 (19.
The integral over angles in E¢R0O) can be split into two
and regions: one is for trajectories that are almost parallel to the
020 sﬁ PR wire axis < < Oy, T 0. <O<m-— 9 with the distribution
f,=— {Tg_‘” 0sf— ] 1 —q—< . as in Eq.(17), and the other is for large anglés< <<
UE COSd 2€| 9z vgcosd - 6, with the distribution as in Eq(19). Therefore, calculat-

(19 ing the contribution of the first term in E¢L5) to the energy

current we get by the order of magnitude
The first term in brackets describes the disorder-modified

drift. Its relative magnitude with respect to the Andreev dif-
fusion (the second terpnis of the order of(vy/ve)A(¢/s)?, IL~- Nshf ofede f
i.e., much larger than nonquasiclassical corrections of the o
order (e/Eg)? to the usual diffusion. We neglect the latter +f”’2 2 }

e—26(//9| g| ede
UF

v
. . —20,16 o]
corrections in what follows. e t—=0de (22

A UF
where 6f, =tanh e/ 2T,) —tanh(e/ 2T,). The factorse™2%/? ac-
IV. ENERGY CURRENT count for the exponential decay of the drift contribution for
The energy current has the fotn small angle¥)< 6,. This equation holds if.> 6. In the op-
4. [ posite limit, .< 6, the first term disappears while the angle
le=— vevp f d?r f —EJ cos fef ,de. (20) 0. in the second term is replaced with Consider the total
Am ) ., number of channelbl as a function of increasing.
I. Intermediate regimea<{<d. Here 6.< 6, thus
there are no trajectories with ballistic drift. We find for the
ratio VL:NL/NSh

For very long mean free patt.>d the distribution is de-
termined by Eq(17), and we recover the Landauer formula
derived in Ref. 9

dQ, (™ L (23
I‘g=—v|:fd2rfsz_OC svyfqde. (21) i EZdmax 62, 67}

min’

II. Clean limit: d< ¢ <d(Eg/T), such that).<1. One can

With f,=tank(e/2T,) -1 for vg>0 and f,=tank(e/2T;) -1 separate two cases$t) long wires, d>ayEL/T, such that

for vy <O we arrive at Eq(4) for the heat conductance.

Assuming that the group velocity is independentdofie 0c= Ormin= O
obtain a qualitative behavior described in the introduction. T 6, T ¢
Indeed, forf.<d, the distribution obeys Eq19) where (e In )T E In d
F min F

the last term does not contribute to the current. The current
becomesl,=«(T;—T,) with the total thermal conductance and (ii) short Wires,d<a\s“E,:7r, such thatfy> 6,
k=(T/R)N=(T/%)(Na+N,) given by Egs(1) and(5).

This simplified picture has to be modified, however, due y ~— In[l +_C] T In[l +lﬂ}
to a rapid divergence afy at small angles. This leads to a Er Oy Er Era?
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Ill. Superclean limit:¢>d(Ez/T), 6.— #/2. The Land-
auer drift saturates at its ballistic limit

T
we e In[min{E&/T,d%/a?}]. (24)
F

V. DISCUSSION

Using these estimates, two regimes of long and short

wires can be distinguished.
A. Long wiresd> a\Eg/T.

2 43
a<{<a/EHT: v ~ E_éﬁ’ (25
— TC
aVEl/T<t<d y ~ E_Fd’ (26)
T ¢
Er d
T Ee
dE/T) < €: vy ~ — In—. 28
(F ) 0 E- T (28)

Therefore, the full saturation at tHeindependent Landauer-
type drift conduction Eq(21) occurs whenf 4~ (T/Eg)¢
becomes larger thash

B. Short wiresd<ayEg/T.

T2 63
a<{<d: VLNE—E%, (29)
E T T¢d
d<t<d—: VL~—In{1+—2}, (30
T Er Eca
E T d
d— <€y ~—In~—. (31)
T Er a

To summarize: A€ decreases, the breakdown of the Lan-

dauer formula for an Andreev wire E@24) begins at{

PHYSICAL REVIEW B 70, 075310(2004)

For long wiresd>ayEg/T we can get aeentrant local-
ization for a<€ <d. Indeed, the total number of modes in-
cluding the Andreev diffusion is in this case

NN [émfn_fmiﬂ_ezl}
S ed a Eqd Era?' | |

The total conduction reaches its minimum
Nimin ~ Nsy(@/d)VT/Ex

at €min~aVEg/T. The reentrant localization is possible for
wire lengths longer thaul.~ a(kra)>\T/Eg. The condition
d.> a\s’m' requires(T/Eg)(ksa)2> 1 which is always sat-
isfied for T= ¢,. Sincefy andd, are T dependent, the pre-
dicted localization regime in a wire with a given length and
disorder can be observed by varying the temperature.

For short wires,d<ayEg/T the number of conducting
channels has a minimum fdr~d. This regime is similar to
one discussed in the Introduction for ballistic wires: The
minimum is determined by free traversing trajectories, Eq.
(3). The localization can appear df>d; whered;~ a(kga).
This length should be smaller thanEg/T)*? which requires
very low temperature§T/Eg)(ksa)?< 1. The corresponding
temperatures are much lower than the distance between the
energy levels in the wirdvg/a. At these temperatures the
Landauer drift is already localized.

Note that the localization effects discussed above for ar-
tificially fabricated Andreev wires can be reduced by normal
scattering at the wire boundaries if there is a mismatch of
Fermi velocities or possible potential barriers. However, we
expect that the nonmonotonic dependence of the conduc-
tance should hold as long as the normal reflection is small.

To conclude, we have developed a theory of single elec-
tron transport and reentrant localization in clean Andreev
wires. Our results could stimulate experimental research of
these phenomena in the mixed or intermediate state, as well
as in hybrid SN structures.
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