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We present a unified description of the low-temperature phase of granular metals that reveals a striking
generality of the low-temperature behaviors. Our model explains the universality of the low-temperature
conductivity that coincides exactly with that of the homogeneously disordered systems and enables a straight-
forward derivation of low-temperature characteristics of disordered conductors.
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Granular metals exhibit a wealth of behaviors generic to
strongly interacting disordered electronic systems and offer a
unique experimental tool for studying the interplay between
the effects of disorder and interactions. Depending on the
strength of coupling between the grains these systems can
assume either insulating or metallic phases. Remarkably, me-
tallic samples exhibit qualitatively different transport proper-
ties in different temperature regimes; in particular, the low-
temperature phase appears to be similar to disordered Fermi
liquids.

The electronic transport in granular metals is governed by
the nontrivial interplay between the diffusive intragrain elec-
tron motion and grain-to-grain tunneling, which is accompa-
nied by sequential charging of the grains involved in the
particular electron transfer process. This brings the notion of
the Coulomb blockade, and one expects that it is the compe-
tition of intergrain coupling and electron-electron Coulomb
interactions that eventually controls transport properties of
granular metals. The basic parameter that characterizes trans-
port properties is the dimensionless tunneling conductance,
gT. Depending on the bare tunneling conductancegT

s0d, the
conductivity can demonstrate either exponential(insulating),
at gT

s0d!gT
C, or logarithmic(metallic), at gT

s0d@gT
C, tempera-

ture dependencies,1–4 experiencing a metal-insulator transi-
tion at gT

s0d=gT
C.

The metallic phase was recently studied in Ref. 1 where it
was shown that the low-temperature dependence of the con-
ductivity of granular metals coincides exactly with the cor-
responding result for the conductivity of the homogeneously
disordered samples. A question immediately arises: is it a
coincidence that two different physical systems exhibit iden-
tical low-temperature transport behaviors, or there is an un-
derlying deep connection between the two? Furthermore, do
all the other physical quantities(specific heat, tunneling den-
sity of states, etc.) possess the same universality? The main
result of our paper is the answer to these fundamental ques-
tions.

Generally speaking, all the universalities that one ob-
serves in nature can usually be attributed to one or another
kind of the fundamental symmetry inherent to the physical
system in question. For example, all critical phenomena are
described in terms of universal models(Ginzburg-Landau
Hamiltonian) that essentially include only the information
about the large scale symmetry of the order parameter corre-

sponding to the relevant degrees of freedom. Thus in order to
uncover the universality of inhomogeneous metals one has to
seek for a universal description in terms of the appropriate
large scale degrees of freedom that characterize disordered
conductors.

We construct such a universal description of low-
temperature physical properties of granular metals building
on thes model introduced first for the noninteracting dirty
metals in Refs. 5 and 6 and generalized in Ref. 7 to include
the interaction effects. Our approach applies at temperatures
T,gTd, whered is the mean energy level spacing in a single
grain. The energy scalegTd appears naturally as the upper
energy cutoff of the effective model, since" /gTd is the mean
time for the electron to escape from the granule.8

The main results of our work are as follows: Making use
of the effective description of the granular metals in terms of
the s model, Eq.(9a), we show the following:(i) All the
phenomena that are described in terms of thes model in-
cluding interaction and localization effects, and all the ther-
modynamic quantities are universal for granular metals.(ii )
There are several physical quantities, which, although not
directly related to the charges in thes model can, neverthe-
less, be found from the renormalization group equations de-
scribing the flow of charges of thes model. The important
example of such a quantity is the tunneling density of states.
We summarized our result in Fig. 1 where three distinct
phases that one can identify on the basis of our approach are
presented:(i) The universal low-temperature phase, which
we refer to as to the granular Fermi liquid, generalizes natu-
rally the Fermi-liquid phase of homogeneously disordered
metals. The granular Fermi-liquid phase neighbors(ii ) the
high temperature,T.gTd, metallic phase governed by the
local single-grain physics, and(iii ) the insulating phase,
wheregT

s0d,gT
C, characterized by the activation behavior of

the conductivity.
Now we turn to the description of our model and the

derivation the phase diagram in Fig. 1: We consider a
d-dimensional array of metallic grains with the Coulomb in-
teraction between electrons. The motion of electrons inside
the grains is diffusive, and they can tunnel from grain to
grain. We assume that in the absence of the Coulomb inter-
action, the sample would be a good metal. The system of
weakly coupled metallic grains is described by the Hamil-
tonian
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Ĥ = Ĥ0 + Ĥint + o
i j

ĉ†sr idtij ĉsr jd, s1ad

where tij is the tunneling matrix elementsstij = tjid corre-
sponding to the points of contactr i and r j of ith and j th

grains. The HamiltonianĤ0 in Eq. (1a) is

Ĥ0 = o
i
E d3r iĉi

†fp̂2/2m− m + usr idgĉi , s1bd

with m being the chemical potential; it describes noninteract-
ing electrons scattered by the random impurity potential
usr id. The second term in the right-hand side of Eq.(1a)
describes the electron-electron interaction

Ĥint =
e2

2 o
i j

n̂iCij
−1n̂j , s1cd

whereCij is the capacitance matrix andn̂i =ed3r iĉi
†ĉi is the

electron number operator in theith grain.
Using Eqs.(1a)–(1c) the s model for granular systems

can be derived in the usual way:7–9 we decouple the Cou-
lomb interaction term in Eq.(1c) using the axillary fieldsV,
average over disorder introducingQ-matrix field,6,7 and ex-
pand around the diffusive saddle point. The final expression
for the effective low-energy action reads

S= −
p

2d
o

i

Trfs«̂ + VidQig −
pgT

8 o
ki,jl

TrfQiQjg

+
1

T
o
i,j

Vi
* Cij

2e2Vj . s2d

Here the sums are performed over the grain indices, the sym-
bol k¯l means summation over the nearest neighbors, the
trace is taken over spin, replica, and Matsubara indices, and
«̂= i]t. The fieldV in Eq. (2) is a vector in the frequency and
replica spaces and the corresponding contraction is assumed:
V* V=ovn,aVvn,a

* Vvn,a, wherea is the replica index andvn

=2pTn are the bosonic Matsubara frequencies. TheQ matrix
in Eq. (2) is the matrix in the Matsubara, spin, and replica
spacesQ→Qvn1

,vn2
;a,b

a,b subject to the constraintQ2=1. In

addition, each element of theQ matrix is a quaternion, i.e., it
can be presented asQ=qiti, whereqi is the real vector andti
are the quaternion matrices.6 For energies«!ET, whereET
is the Thouless energy, theQ matrices in Eq.(2) are coordi-
nate independent within each grain. In what follows we use
the Hikami parametrization for theQ matrix,10

Q = SÎ1 − BB† B

B† − Î1 − B†B
D , s3d

where the matrixBvn1
,vn2

has nonzero elements only for fre-

quenciesvn1
.0, vn2

,0. Expansion of theQ matrix in
powers of the fieldB in Eq. (2) provides a systematic way to
take into account 1/gT corrections.

First we consider the action(2) in the quadratic approxi-
mation in the fieldB, which defines the bare propagatorD
=kBB†l shown in Fig. 2(a),

Dsvn,qd = s2d/pdsgT«qd + uvnud−1, s4d

where q is the quasimomentum and«q=2oas1−cosq ·ad
with haj being the lattice vectors.

The Coulomb interaction, represented by the propagator
of the V fields, is significantly modified by the electron
screening. To include this effect in thes-model approach one
needs to consider the interaction vertex shown in Fig. 2(b)
that appears from the expansion of the term TrfViQig in Eq.
(2) to first order in fieldB. The propagatorF=kVV* l that
describes the screened Coulomb interaction is given by the
diagrams shown in Fig. 2(c). For a strong Coulomb interac-
tion, EC@ suvnu+gT«qdd /gT«q the resulting propagator is
given by the following expression:

FIG. 1. Schematic phase diagram for granular metals showing
crossovers between three distinct phases. At small bare tunneling
conductances,gT

s0d
,gT

C, a granular metal is in an insulating phase at
zero temperature. The metal-insulator transition in three dimensions
at T=0 occurs atgT

C=s1/6pdlnsEC/dd, where EC and d are the
charging energy and the mean energy level spacing in a single grain
respectively. At large tunneling conductance,gT

s0d
.gT

C, the two dif-
ferent types of conductivity behavior are possible:(i) the high-
temperature phase,T.gTd, is characterized by the logarithmic tem-
perature dependence of the conductivity in all dimensions;(ii ) the
low-temperature phase,T,gTd, is the universal granular Fermi-
liquid phase described in terms of low-energy interacting diffusion
modes.

FIG. 2. Diagram(a) defines the bare propagator of fieldsB
given by Eq.(4). Diagram(b) represents the interaction vertex that
appears from the expansion of terms TrfViQig in Eq. (2) to the first
order in the fieldB. Diagrams(c) represent the Dyson equation that
defines the screened Coulomb interaction(thick dashed line). Thin
dashed lines denote the bare Coulomb interaction.
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Fsvn,qd = sgT«qd + uvnud/2gT«q. s5d

Now we turn to the description of the renormalization
group (RG) procedure that we apply to the action(2) to
derive the low-energys model that provides the universal
description of the low-temperature phase,T,gTd. We divide
the fieldB into the slow and fast partsB=Bs+Bf and define
the fast part of the fieldBvn1

,vn2
in such a way that it exists

either for L,vn1
,L+dL or −L−dL,vn2

,−L. The
renormalization of the diffusion propagatorDsvn,qd in Eq.
(4) due to the Coulomb repulsion after integration over the
frequency shelldL is given by the sum of the diagrams
shown in Fig. 3(c), resulting in

Dsvn,qd = s2d/pdj/sg̃T«qd + uvnud. s6ad

Here the wave function correctionj and the renormalized
intergranular tunneling conductanceg̃T are given by the fol-
lowing expressions:

j = 1 −
1

pgT
o
q

1

«q

dL

L
, g̃T = gT −

1

2pd

dL

L
, s6bd

whered is the dimensionality of the granular array. The wave
function correctionj in Eq. (6a) is directly related to the
correction to the single-particle density of states derived in
Refs. 2 and 11. One can see from Eq.(6b) that this correction
diverges in two dimensions. To avoid this problem the RG
procedure in two dimensions should be modified in the way
it was done in Ref. 11 where the tunneling density of states
was derived on the basis of the effective phase functional.
However, for the purpose of the derivation of the low-energy
s model, this complication can be avoided since the wave
function renormalization appears only in an intermediate step
of the derivation and does not contribute to the final result
for the low-temperature action, as happens in two-
dimensional homogenously disordered metals.7

To find the propagator of the renormalized effective Cou-
lomb interactionFsvn,qd in Eq. (5) one needs to consider
corrections to the polarization operator shown in Fig. 4.
Apart from taking into account the proper renormalized ex-
pression for the diffusion propagatorDsvn,qd in Eq. (6a),
one needs to take into account the vertex correction shown in
Fig. 4(b). This vertex correction cancels the wave function

renormalizationj, as happens in the case of homogeneous
disordered metals,7,13–15such that the final expression for the
renormalized Coulomb potential has the following form:

Fsvn,qd = sg̃T«qd + uvnud/2g̃T«q. s7d

Here the renormalized tunneling conductanceg̃T is defined
by Eq. (6b). Thus the renormalization of the Coulomb inter-
action is reduced to the renormalization of the intergranular
tunneling conductance. This fact is very important for the
formulation of the RG scheme.

Integration of Eq.(6b) in the energy intervalsgTd ,ECd,
whereEC is the charging energy for a single grain, results in
the following tunneling conductance:

gT = gT
s0d − s1/2pddlnsEC/dd. s8d

For energies lower thangTd the physics is dominated by the
distances that are much larger than the size of a single grain.
This allows us to consider the continuum limit of thes
model, and arrive at the corresponding final expression for
the action,

S= −
p

2d
E TrFs«̂ + VdQ −

D

4
s¹Qd2Gdr

ad

+
1

T
E drdr 8

a2d TrFVr
*
Crr 8

2e2 Vr8G , s9ad

wherea is the grain size. The renormalized diffusion coeffi-
cient D in Eq. (9a) is given by

D = gTa2d, s9bd

with gT being the renormalized tunneling conductance de-
fined by Eq.(8). Since the effective model(9a) operates with
theQ matrices that have only long-range degrees of freedom,
it applies, with the appropriate charges and upon the high-
energy renormalization, to any disordered metal, including a
homogeneously disordered one. Thus, all the information
about the granularity of the sample is hidden in the
temperature-independent renormalization of coefficients of
the effective model(9a). The conductivity of the sample is
related to the effective diffusion coefficientD through the
usual Einstein relation

s = 2e2Dsaddd−1. s10ad

The effective model(9a) together with Eq.(8) for the renor-
malized conductance naturally explains the result for the
low-temperature,T,gTd, conductivity obtained in Ref. 1.
The interaction correction to conductivity has two contribu-
tions. The first contribution is temperature independent and
is given by

FIG. 3. Diagrams(a) appear from the expansion of terms
Trf«Qig and TrfQiQjg in Eq. (2) to the fourth order in the fieldB.
Diagram (b) appears from the expansion of interaction term
TrfViQig in Eq. (2) to the second order in the fieldB. Diagrams(c)
represent the renormalization of the diffusion(Cooperon) self-
energy due to Coulomb repulsion leading to Eq.(6a). The thick
dashed lines denote the screened Coulomb interaction. The tunnel-
ing vertices are represented by circles.

FIG. 4. Diagram(a) represents the renormalized polarization
operator that includes(i) the renormalized expression for the diffu-
sion propagatorDsvn,qd in Eq. (6a) (black rectangle) and (ii ) the
renormalized vertex(black triangle) shown in diagram(b). The
thick dashed line denotes the screened Coulomb interaction.
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ds1 = − s0
1

2pdgT
lnFEC

d
G , s10bd

wheres0=2e2gTa2−d is the classical Drude conductivity of
granular metals. Equation(10b) follows immediately from
the renormalization of the tunneling conductancegT in Eq.
(8) and is specific to granular metals. The second contribu-
tion to conductivity is temperature dependent and comes
from the low-energy renormalization of the diffusion coeffi-
cient D in the effective model(9a). It coincides with the
corresponding correction to conductivity obtained for homo-
geneously disordered metals in Ref. 12,

ds2 = s0 35
a

12p2gT

Î T

gTd
, d = 3

−
1

4p2gT
ln

gTd

T
, d = 2

−
b

4p
Î d

TgT
, d = 1

6 s10cd

wherea<1.83 andb<3.13 are the numerical constants.
Although the tunneling density of states is not directly

related to the charges in thes model, it can, nevertheless, be
found from the renormalization-group equations describing
the flow of charges of thes model. Since at low tempera-
tures the flow of coupling constants of thes model of granu-
lar metals is determined by the same renormalization-group
equations as in the case of homogeneously disordered met-
als, one arrives at the important conclusion that the tunneling
density of states has a multiplicative structure:

n/n0 = nhnl , s11d

wheren0 is the density of states of noninteracting electrons,
nh is the contribution to the density of sates that comes from
high energies,«.gTd, while nl is the contribution from low
energies,«,gTd, which up to the proper renormalization of
all constants coincides with the corresponding result for the
density of states of disordered homogeneous metals. As an
application of Eq.(11) let us consider the density of states of
granular films. The low-energy contribution,nl in Eq. (11), is

nl = expF−
1

16gTp2ln
gTd

T
ln

gTEC
4

Td3 G , s12ad

whereas the “high-energy” part of the tunneling density of
states,nh in Eq. (11), is temperature independent atT,gTd
and for granular films is given by

nh = FEC

d
G1/pF1 −

lnsEC/dd
4pgT

s0d G4gT
s0d

. s12bd

At large tunneling conductance,gT@1, the result for the
low-energy contribution,nl, in Eq. (12a) coincides with the

perturbative result for the density of states of granular metals
obtained in Ref. 1.

Having described the effects of the electron-electron in-
teraction on the transport properties of granular metals, we
now turn to quantum(or weak localization) corrections to the
conductivity.16 To leading order in the inverse tunneling con-
ductance, 1/gT, interaction and weak localization corrections
can be considered independently. As usual, the weak local-
ization correctiondsWL is defined by the following expres-
sion:

dsWL = −
2

p
e2gTE Cs0,qd

ddq

s2pdd , s13d

whereCs0,qd is the Cooperon propagator, which in the ab-
sence of electron-electron interactions is given byCsv ,qd
=sDq2− ivd−1 with D being the effective diffusion coefficient
in Eq. (9b). For two- and one-dimensional samples it is im-
portant to take into account dephasing effects since Eq.(13)
diverges. The dephasing timetf may be obtained from the
effective model(9a) straightforwardly using the correspond-
ing results for homogeneously disordered metals17 with the
proper effective diffusion coefficient,D=gTa2d. The final re-
sult for the weak localization corrections reads

dsWL

s0
= −

1

4p2gT
lnSgT

2d

T
D s14ad

for granular films, and

dsWL

s0
= −

1

2pgT
SgT

2d

T
D1/3

s14bd

for granular wires. We notice that the quantum interference
correctionsdsWL may be easily suppressed by applying a
relatively weak magnetic field such that the main tempera-
ture dependence of the conductivity comes from electron-
electron interaction effects, Eqs.(10b) and (10c).

In conclusion, we have derived a low-energys model that
provides a universal description of the low-temperature
phase of granular metals and, more generally, of any disor-
dered conducting medium. This model explains a striking
similarity of the low-temperature transport behaviors of dif-
ferent disordered conductors as being governed by the same
long-wavelength electronic diffusion modes. The proposed
model enables one to derive the low-energy properties of
granular metals from the corresponding characteristics of
disordered homogeneous metals. We demonstrated the power
of the developed approach by finding the density of states,
the interaction, and localization corrections to the conductiv-
ity of granular metals.
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