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The magnetization and magnetic ac susceptibility,x=x8− ix9, of superferromagnetic systems are studied by
numerical simulations. The Cole-Cole plot,x9 versusx8, is used as a tool for classifying magnetic systems by
their dynamical behavior. The simulations of the magnetization hysteresis and the ac susceptibility are per-
formed with two approaches for a driven domain wall in random media. The studies are motivated by recent
experimental results on the interacting nanoparticle system Co80Fe20/Al2O3 showing superferromagnetic be-
havior. Its Cole-Cole plot indicates domain-wall motion dynamics similarly to a disordered ferromagnet,
including pinning and sliding motion. With our models, we can successfully reproduce the features found in the
experimental Cole-Cole plots.

DOI: 10.1103/PhysRevB.70.214432 PACS number(s): 75.60.2d, 75.75.1a, 75.40.Gb, 75.40.Mg

I. INTRODUCTION

The physics of interacting ferromagnetic(FM) nanopar-
ticles is a vivid topic of modern magnetism research. This
also applies to the study of the reversal dynamics in thin FM
films. The first subject, the properties of interacting FM
nanoparticles, is investigated by many groups focusing either
on the preparation(e.g., Refs. 1 and 2) or the magnetic prop-
erties (e.g., Refs. 1 and 3–7). Numerous theoretical studies
were perfomed in order to understand the observed phenom-
ena or to explore possible new effects(e.g., Refs. 8–12).

While individual single-domain FM nanoparticles exhibit
superparamagnetic(SPM) behavior,1,13–15 interacting en-
sembles lead to very different kinds of phenomena depend-
ing on the type and strength of interactions. Dipolar interac-
tions become relevant since the magnetic moment, e.g., for
particles with diameter 5 nm, is of the order 5000mB, while
the interparticle distances are of the order 1−10 nm. The
simple formula for the mean dipolar energy of a particle to
one neighbor,Ed−d/kB=sm0/4pkBdm2/D3, yields already 16
K for D=10 nm. Considering many neighbors and shorter
distances, it is obvious that the effects of dipolar interaction
can be observed even at temperatures of the order 100 K. In
addition, several other types of interactions are proposed,
i.e., higher-order multipole terms of dipolar,16,17 tunneling
exchange,18 or even retarded van der Waals interactions.19

Independent from the still open question of which interac-
tions are relevant, one can summarize that essentially three
different kinds of phenomena occur.20

For large interparticle distances, and hence a small con-
centration of particles, the(dipolar) interaction is only a per-
turbation to the individual particle behavior and no collective
behavior is found.6,20,21 For intermediate concentrations, a
superspin glass(SSG) phase is encountered. In this case the
particle moments(superspins) collectively freeze into a spin
glass phase below a critical temperature,Tg.

4,20,22–24For even
higher concentrations, a superferromagnetic(SFM) state is
found. It is characterized by a ferromagnetic arrangement of

the moments.25–30The magnetic dynamic behavior resembles
at first glance that of the SSG case, but actually shows fea-
tures of domain-wall motion similar to an impure ferromag-
net, as will be discussed below.31 Here one should mention
that also additional types of collective ordering are proposed
in the literature, e.g., the correlated superspin glass state
(CSSG),32,33and also that the effects of surface spin disorder
may become significant.34

The second topic, the reversal dynamics in thin ferromag-
netic films, finds equally large interest. Both
experimental35,36 and theoretical35,37–39 investigations are
performed in order to achieve a better understanding of the
processes during the hysteresis cycle. The magnetization re-
versal occurs either by domain-wall(DW) nucleation and
motion or by magnetization rotation.40 The DW motion at
constant(dc) fields is characterized by three regions depend-
ing on the field strength, that is,creep, depinning, andsliding
motion. Creep is the thermally activated motion of DWs,
where the average DW velocity isysHd~expf−sTp/Td
3sH /Hpd−mg.41–43 This behavior is encountered at small ap-
plied fields, H!Hp, where Hp is the critical depinning
threshold andTp proportional to a characteristic depinning
energy, Up=kBTp. At zero temperature, a dynamic phase
transition of second order atH=Hp is found. The mean DW
velocity, y, can be interpreted as an order parameter of the
depinning transition, withysHd~ sH−Hpdb.44 At T.0, the
phase transition is smeared out and theysHd curve is
rounded. Beyond the depinning region,H@Hp, sliding mo-
tion sets in and the DW velocity becomes linear with applied
field, y<gH. Hereg is the mobility coefficient.45,46

In alternating(ac) (magnetic) fields,H=H0 sinsvtd, addi-
tional dynamical effects will arise. The coercive field and the
loop area become dependent on the frequency, or in other
words on the field sweep rate,36,39 dynamic phase transitions
and crossovers occur,38,45,47the ac susceptibility versus tem-
perature shows similar features to spin glass systems,48 and a
DW velocity hysteresis is found.49 Different models are em-
ployed, i.e., numerical solutions of the coupled differential
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equations of the DW displacement starting from Maxwell’s
equations,37 using an interface depinning model for an elastic
DW in random media38,45,49,50 [sometimes referred to as
quenched Edwards-Wilkinson51 (EW) equation], kinetic
simulations of a DW in the sliding motion regime,39 and
calculations based on Fatuzzo’s domain theory52 applied to
ultrathin magnetic layers.35

In this paper, we will present model investigations moti-
vated by recent experiments on the SFM system
fCo80Fe20s1.4 nmd /Al 2O3s3 nmdg10 being a realization of a
densely packed ensemble of interacting nanoparticles. The
complex magnetic ac susceptibility,x8− ix9, reveals that the
magnetic dynamic behavior can be explained within the con-
cept of domain-wall motion in an impure ferromagnet.31,53

That means the granular system behaves like a thin FM film,
the only difference being that the atomic moments are to be
replaced by “supermoments” of the individual particles. This
concept implies that the FM nanoparticles remain single-
domain whereas the ensemble shows collective SFM behav-
ior. This idea is evidenced from theCole-Cole plot, x9 versus
x8.54 Hence we will focus on the Cole-Cole presentation and
compare it to that found experimentally.

II. ac SUSCEPTIBILITY AND COLE-COLE PLOTS

Magnetic systems exhibiting relaxational phenomena can
be characterized by the complex ac susceptibility,xsvd=x8
− ix9. The time-dependent complex ac susceptibility is de-
fined as

Mstd = x̃stdH̃std, s1d

with the complex external field, H̃std=−ıH0e
ıvtfHstd

=Re(H̃std)=H0 sinsvtdg and the magnetizationM. In this pa-
per, we study the time-independent term of the Fourier series
for x̃std, namely

x ; x8 − ıx9 =
1

TE0

T
dtx̃std, s2d

with T=2p /v=1/ f.
This definesx8 andx9 as follows:

x8svd =
1

H0TE0

T
dtMstdsinsvtd, s3d

x9svd = −
1

H0TE0

T
dtMstdcossvtd. s4d

Or equivalently, if we define x̃std=dMstd /dH̃std=Ṁstd
3sdH̃/dtd−1,

x8svd =
1

2pH0
E

0

T
dtṀstdcossvtd, s5d

x9svd =
1

2pH0
E

0

T
dtṀstdsinsvtd. s6d

One way of presenting the data is the Cole-Cole or Ar-
gand representation. The imaginary part is plotted against the
real part of the susceptibility,x9 versusx8.54,55It can serve as
a fingerprint to distinguish different magnetic systems by
their dynamic response. For example, a monodisperse en-
semble of noninteracting SPM particles has exactly one re-
laxation time, t=t0 expsKV/kBTd,13,14 and will display a
semicircle with the center on thex8 axis. HereK is an effec-
tive anisotropy constant,V the volume of the particle, andt0
corresponds to the microscopic spin-flip time which is of
order of 10−10 s. The Cole-Cole plot can easily be derived
from an analytic expression for the ac susceptibility given in
Ref. 8 for a monodisperse SPM ensemble in zero-field with a
random distribution of anisotropy axis directions,

x8svd = m0
Ms

2

3K
F1 +

KV

kBT

1

1 + svtd2G , s7d

x9svd = m0
Ms

2

3

V

kBT

vt

1 + svtd2 , s8d

whereMs is the saturation value of the magnetization. De-
fining a;m0Ms

2/3K ands;KV/kBT and eliminatingv, one
gets

x9 =ÎSas

2
D2

− Sx8 −
as2 + sd

2
D2

, s9d

which describes a circle with the radiusr =as /2 and center
at (as2+sd /2 ;0) in the Cole-Cole plane.

In Fig. 1(a), the result is shown for parameters
m0Ms

2/3K=1 andKV/kBT=1. In the case of a particle size
distribution(polydispersivity) and hence a distribution of re-
laxation times, the Cole-Cole semicircle is expected to be-
come flattened and/or distorted.55 Figure 1(b) shows two nu-
merically obtained curves, where a particle volume
distribution from a log-normal distribution(circles) and a
Maxwell distribution61 (diamonds) is assumed using
m0Ms

2/3K=1, K /kBT=1, t0=1, kVl=1, and a relatively
broad distribution widthDV=0.9. One finds an asymmetric
Cole-Cole plot for the case of a log-normal distribution. Ob-
viously this is due to the asymmetry of the distribution itself.
By choosing the more symmetric Maxwell distribution, the
curve becomes symmetric and only slightly shifted down-
ward. Extremely high polydispersivity is found in spin glass
systems, where the distribution of relaxation times is ex-
pected to become infinitely broad due to collective
behavior.56 Figure 1(c) shows an experimentally obtained
Cole-Cole plot on the SSG systemfCo80Fe20s0.9 nmd /
Al 2O3s3 nmdg10 at different temperatures,T=50, 55, and 60
K.57 Here the particle sizes follow a relatively narrow Gauss-
ian distribution with kVl=11.5 nm3 and DV=0.95 nm3 as
evidenced from a transmission electron microscopy image
for a simliar sample.7

III. MODELS

We study the complex ac susceptibility with two different
approaches, where account is taken of the fact thatM is
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controlled by the field-induced sideways motion of one DW.

In this case, it follows thatṀstd~ystd, where ystd is the
(mean) DW velocity, being a function of the external field
Hstd and temperatureT. Both approaches are based on the
same underlying model for ad-dimensional elastic DW in a
D=sd+1d-dimensional random environment,

H =E ddxHG

2
s¹xZd2 − HstdZ + VRsx,ZdJ , s10d

whereZ=Zsx ,td is thed-dimensional displacement profile of
the DW with internal coordinatex, G the stiffness of the DW,
andVR the(quenched) random potential.VR can be written in
the following way:

VRfx,Zsx,tdg = −E
0

z

dZ̃ gfx,Z̃sx,tdg, s11d

wheregfx ,Zsx ,tdg describes the random force acting on the
DW with kgl=0 and kgsx ,zdgsx8 ,z8dl=d dsx−x8dD0sz−z8d,
with D0szd=D0s−zd being a random force correlator which is
a monotonically decreasing function decaying over a finite
distance,.

Since the experimental system is a magnetic film, we re-
strict ourselves to the caseD=2 in the following. The dy-
namics of the system follows from the EW equation of mo-
tion,

1

g

] Zsx,td
] t

= −
dH
dZ

+ hsx,td , s12d

whereg is a kinetic coefficient andhsx ,td is a thermal noise

term. The DW velocity is given byysx ,td=Żsx ,td. Here we
are interested in the mean DW velocityystd;kysx ,tdlx and
mean displacementZstd;kZsx ,tdlx, from which we can cal-
culate the ac susceptibility as described above. Herek¯lx

denotes the average over the internal DW coordinatex.
(i) Adiabatic approach. We use the expression for the

mean DW velocity in the adiabatic driving regime following
from a functional renormalization group(RG) treatment of
Eq. (12), given in Ref. 45, which interpolates between the
creep regime and sliding DW motion,

ysH,Td = HgHFsx,yd for H Þ 0,

0 for H = 0,
s13d

wherex=H /Hp, y=Tp/T and

Fsx,yd =
Us1 − xd

1 + syx−mdb/u expfyx−ms1 − xdug + Usx − 1d

3F 1

1 + syx−mdb/u + S1 −
1

x
DbG . s14d

HereUsxd is the step function,Tp.G,2Lp
2−d the typical pin-

ning energy on the Larkin length scaleLp, Hp the zero-
temperature depinning field, andm, b, and u the relevant
critical exponents45 which depend on the DW dimensiond. A
time discretization,Dt, is used which is chosen to be much
smaller than the period of the driving field,Dt=10−5T. Then
Zstd is calculated for each time step by a simple integration
of Eq. (13), i.e., DZstid=yfHstidgDt, whereyfHstidg is calcu-
lated for each time step from Eq.(13). Here the values of
time t, T, v, and f are chosen to be dimensionless, since no
quantitative comparison to the experiment is required. For-
mally this can be done by introducing an arbitrary time scale
t0 and substitutingt→ t / t0. Analogously this can be applied
to all other parameters and observables, i.e., fieldH0/Hp
→H0, temperatureT/Tp→T, velocity y→y / sgHpd, and
lengthLz/L0→Lz, whereL0 is an arbitrary length scale.

The magnetization for a finite system is defined here as

Mstd = S2Zstd
Lz

− 1D , s15d

whereLz is the extension of the sample in theZ direction and
0øZøLz. This implies that −1øM ø +1. In all cases, the
initial condition is Zs0d=Lz/2. This approach includes the
temperature as a parameter, but we restrict our investigations
here to small values,T=0.1.

(ii) Nonadiabatic approach. Since Eq.(13) was obtained
for an adiabatically changing field, it can only be used as an
approximation, if the frequency is sufficiently small49 (see
also Fig. 2 in that Ref.). In order to include the pronounced
nonadiabatic effects at higher frequencies(e.g., hysteresis of
the velocity), one has to start with the underlying equation of
motion (12), which yields

FIG. 1. Cole-Cole plots,x9vs x8, (a) analytically obtained for a
noninteracting monodisperse ensemble of SPM particles with
m0Ms

2/3K=1 andKV/kBT=1 (see text); (b) numerical result for a
polydisperse ensemble with a log-normal distribution(circles) and a
Maxwell distribution (diamonds) of particle volumes with
m0Ms

2/3K=1, K /kBT=1, t0=1, DV=0.9, andkVl=1; and(c) shows
experimentally obtained curves on the SSG system
fCoFes0.9 nmd /Al2O3s3 nmdg10 at three different temperatures,T
=50, 55, and 60 K(Ref. 57). The particle sizes follow a Gaussian
distribution with kVl=11.5 nm3 andDV=0.95 nm3. The frequency
range is indicated in the figure.
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1

g

dZsx,td
dt

= G¹2Zsx,td + Hstd + g(x,Zsx,td), s16d

where the thermal noise term is neglected which is justified
since the relaxation times for the DW creep at low tempera-
tures are very longs@v−1d and we consider only finite(not
exponentially small) frequencies. In Ref. 49, this equation is
studied in detail in the case of an ac driving force in an
infinite system and it is shown that thermal effects are not
essential for not too low frequencies[v.vT<vPsT/Tpdnz/u

with the critical exponentsn, z, and u]. Therefore, we can
restrict ourselves to the zero-temperature equation of motion.

In this approach, we investigate both infinitesLz→`d and
finite sLz,`d systems. In the second case, the DW will hit
the boundary of the system for low enough frequencies, such
that the magnetization will saturates−1øM ø1d. Therefore,
we can derive a critical frequencyvc above which the sys-
tem will behave as an infinite system. The finite frequency of
the driving force acts as an infrared cutoff for the propaga-
tion of the DW which can move up to a length scaleLv

=LpsGgLp
−2/vd1/z. Equating this scale toLz gives the follow-

ing expression forvc (fc accordingly):

vc < vpsLp/Lzdz , s17d

with the typical pinning frequencyvp=gG /Lp
2.

For the numerical integration of Eq.(16), it is discretized
in x direction(s) into Nd positions with a lattice constanta.
Here we also go over to dimensionless units with an arbitrary
time scalet0. These two parameters,a and t0, are chosen
such that t0gG /a2=1 and that the dimensionless random
force t0gg is set to values in the intervalf−1/2,1/2g at po-
sitions with distance,. Between these positions,g is inter-
polated linearly, which results in a Gaussian distribution
D0szd with variance,. The depinning fieldHp is not used as
an input parameter but can be calculated from Eq.(16) (at
v=0) using a bisection procedure with constant amplitude.

For our simulations, we choose,=0.1,N=1000, for finite
systemsLz=8.0, and a time discretization such thatDt
!minsv−1,0.1d. The results forx are averaged over 100
disorder configurations for each frequency.

IV. RESULTS AND DISCUSSION

Figure 2 shows an example of hysteresis loops from simu-
lations within approach(i) with T=0.1, H0=1.85, andLz
=8.0 at different frequenciesf =1.6310−7 (a), 1.6310−3 (b),
7310−3 (c), and 8310−2 (d). Note that all quantities are
measured in dimensionless units, as mentioned above. For
the values of the critical exponents, we use the results from
the RG ford=2, i.e., m=0.24 (Ref. 43), u=0.83 (Ref. 58),
andb=0.66(Ref. 44). (Note that the precise values of these
exponents do not have a significant influence on the behavior
under consideration here; in particular, the qualitative picture
does not change if the values are modified slightly.) With
increasing frequency, the hysteresis loop broadens until it
becomes elliptically shaped abovef =10−2, losing also its
inflection symmetry. Similar results are found in
experiments.31,39

The ac susceptibility of such hysteresis cycles can be cal-
culated from Eqs.(3) and(4). In Fig. 3, the obtained data are
shown for the same set of parameters as for Fig. 2. In(a), one
finds the real and imaginary part of the ac susceptibility,x8
andx9, as a function of the ac frequency. The real part shows
an order-parameter-like behavior with a nonzero value below
and a vanishing value abovefc<10−2. Furthermore, the
imaginary part has a peak atf =8310−3< fc.

In the Cole-Cole plot, Fig. 3(b), this transition appears as
a sharp change of the slope and curvature. At low frequen-
cies, f , fc one observes a quarter-circle centered on thex8
axis. It is possible to fit a circle with the center on thex8 axis
to the low-frequency data[see solid line in(b)]. This corre-
sponds well to the experimental result31,53 (Fig. 4) and sug-
gests the existence ofone effective relaxation time in the
system. However, forf . fc only a vertical line can be ob-

FIG. 2. M vs H curves from simulations of the adiabatic ap-
proach(i) with T=0.1, H0=1.85,Lz=8.0, m=0.24,u=0.83, andb
=0.66 at different frequenciesf =1.6310−7 (a), 1.6310−3 (b), 7
310−3 (c), and 8310−2 (d). Note that all quantities are measured in
dimensionless units, as described in the text. Lines are guides to the
eye.

FIG. 3. (a) ac susceptibility,x8 andx9, vs ac frequency,f, ob-
tained with model(i) with the same parameters as in Fig. 2.(b)
Same data, but plotted in the Cole-Cole presentation,x9 vs x8. The
solid line represents a least-squares fit of the low-frequency data to
a circle and the arrow shows the direction of increasingf.
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served. This result differs from that found in experiment,
where the high-frequency part is characterized by a positive
slope and positive curvature. This discrepancy needs a closer
inspection here.

By comparison of the susceptibility data to the corre-
sponding hysteresis loops(Fig. 2), one sees thatfc marks the
transition between loops saturating at high fields(low-f) and
those which do not saturate(high-f). In the second case, the
domain wall is always in motion throughout the entire field
cycle. The real part is then zero, whereas the imaginary part
has a 1/f dependence[Fig. 3(a)], which follows directly
from our result shown in Ref. 31, where the complex suscep-
tibility in the case of sliding DW motion is given byx̃
=x`f1+1/sivtdg, or more generally byx̃=x8̀ +x9̀ / sivtd.
For x8̀ =0, this yields directly the vertical part in the Cole-
Cole plot[Fig. 3(b)]. In Ref. 31, it was argued that the non-
linearity of the vsHd function in the creep regime can be
taken into account by introducing a polydispersivity expo-
nent,b, in the above equation,x̃=x`f1+1/sivtdbg [compare
to a similar relationship formulated for the conductivity of
disordered hopping conductorsssvd,s−ivtdnsTd, where 0

,n,1].59,60 This yields the linear relationshipx9
=tanspb /2dfx8−x`g. Note that for any velocity function
v=vsHd with vsHd=−vs−Hd and without velocity
hysteresis,49 it follows that x8=0 and x9~1/ f.50 This can
easily be seen from Eqs.(5) and (6) and Ṁ ~v. The conse-
quence is that a monotonically increasing part with finite
slope cannot be found in the Cole-Cole plot by considering
only the adiabatic motion of one DW.

There are two possible ways to improve the model. The
first one is to simulate an ensemble of noninteracting sub-
systems with different domain propagation lengths, pinning
fields, Hp, or depinning energies,Tp. It is possible that this
case would yield the situation above qualitatively described
by the polydispersivity exponentb,1. The second is to em-
ploy a more realistic description of the DW by using the
above-introduced nonadiabatic approach(ii ). The latter case
was studied here.

In Fig. 5, the results for the magnetization hysteresis of a
DW from Eq. (16) for H0=1.85 are presented. The plots
(a)–(c) show hysteresis loops at different frequencies,f
=0.0016 (a), 0.08 (b), and 0.48(c) for an infinite system
sLz→`d. Here we defineM =Z. In this case, the DW never
touches the sample boundary. At low frequencies, one finds a
symmetric loop with respect to theM axis (a) similar to the
result shown above in Fig. 2(d). This symmetry is lost upon
increasing the frequency,(b) and (c), and the loop becomes
tilted. This tilting is responsible for a nonvanishing real part
of the ac susceptibility and cannot be observed in approach
(i). The tilting corresponds to the appearance of a velocity
hysteresis.49 That means there exists no functional relation-
ship between the velocity and the field any more, as is the
case in the adiabatic regime.

The resulting susceptibilities are plotted in Fig. 6. In(a)
and (b), the real and imaginary part vs logsfd and the corre-
sponding Cole-Cole plot, respectively, are shown for an in-
finite system, when the DW never touches the boundary. In
(c) and (d), the same plots are shown for a finite system
sLz=8.0d. While the low-frequency parts resemble those
from approach(i), the high-frequency part shows a com-
pletely different behavior. Forx8→0, we find in the Cole-

FIG. 4. Experimental Cole-Cole plot taken from Ref. 31 show-
ing x9 vs x8 obtained on the SFM granular system
fCoFes1.4 nmd /Al2O3s2 nmdg10. The susceptibility was measured
at ac amplitudesm0H0=50 (a) and 5mT (b) at 10 mHzøf ø1 kHz
at T=380 (1), 350 (2), 320 (3), and 260 K(4). Transition fields are
marked by arrows(Ref. 31).

FIG. 5. M vs H curves for the nonadiabatic
approach(ii ) with H0=1.85 at different frequen-
cies, f =0.0016(a), 0.08 (b), and 0.48(c) for an
infinite system(in this case one definesM =Z).
(d) shows the magnetization curve forf =0.0016
but a finite systemsLz=8.0d so that the DW
touches the boundaries.
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Cole plot[inset in Fig. 6(d)] a curve with positive curvature
similar to that in the experiment(Fig. 4). One can expect that
x goes to 0 withv→`, since the velocity hysteresis disap-
pears forv→`. Obviously, the more realistic second model
is capable of describing the experimentally found behavior.
At this point, we want to emphasize that the adiabatic ap-
proach only works for low frequencies, where nonadiabatic
effects can be neglected. Furthermore, it only works at finite
temperatures. On the other hand, the nonadiabatic approach
can explain the main experimental features even if we use
the zero-temperature equation of motion, since the smearing
effects of the depinning transition due to finite frequencies
dominate the thermal creep effects at low temperatures.

However, two drawbacks still exist. One, the Cole-Cole
plot from the simulation shows a rather steep and narrow
increasing part compared to the experiment. Second, we can-
not retrieve the experimentally observed saturating part for
the highest experimental frequencies, where the imaginary
part becomes constant(see Fig. 4, inset). This case was
attributed31 to the reversible relaxation response of the DW
for high frequencies and small excitation fields.50,58 It would
be interesting to study this case with a suitably modified
model which includes multiple and interacting DWs.

V. CONCLUSION

In order to get a better understanding of the magnetic
behavior found in the superferromagnetic granular multilayer

fCo80Fe20s1.4 nmd /Al 2O3s3 nmdg10, we employed two types
of simulations of a domain wall in random media driven by
an external magnetic field. Using the first approach with the
mean velocity of a domain wall in the adiabatic limit, one
can explain the monodisperse dynamic response evidenced
by a partial semicircle centered around thex8 axis. However,
it fails to describe the increasing part with positive curvature
for higher frequencies in the Cole-Cole plot. This behavior
can be found by taking the full equation of motion into ac-
count, where an elastic interface is driven in generalnona-
diabatically in a random medium. Hence a model of an im-
pure ferromagnet is capable of describing the main features
of the experimental results. We find that the appearance of a
velocity hysteresis is a crucial element in the dynamic re-
sponse of the superferromagnet. We show that a Cole-Cole
plot may be used to classify magnetic systems by their dy-
namic response. For example, the above-mentioned granular
superferromagnet can unambiguously be distinguished from
a superparamagnet and a superspin glass system.
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FIG. 6. Real and imaginary part of the ac susceptibility vs frequency, calculated within approach(ii ) for infinite systems(a) (the real part
is shifted and scaled) and the corresponding Cole-Cole plot(b). In (c) x8 andx9 are plotted for the finite systemsLz=8.0d and Cole-Cole plot
(d). The inset in(d) shows the high-frequency behavior in more detail. The arrows show the direction of increasing frequencies. All
simulations were performed withH0=1.85.
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