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Spin-dependent tunneling of electrons through magnetic nanostructures containing a mechanically movable
quantum dot is considered. It is shown that the mechanically assisted current can be made strongly sensitive to
an external magnetic field, leading to a giant magnetotransmittance effect for weak external fields of order
1–10 Oe.
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I. INTRODUCTION

Metal-organic nanocomposite materials are interesting
from the point of view of the “bottom-up” approach to build-
ing future electronic devices. The ability of the organic parts
of the composite materials to identify and latch onto other
organic molecules is the basis for the possible self-assembly
of nanoscale devices, while the metallic components provide
mechanical robustness and improve the electrical conduc-
tance.

Such composite materials are heteroelastic in the sense
that the mechanical rigidity of the organic and metallic com-
ponents are very different. This allows for a special type of
deformation, where hard metallic components embedded in a
soft organic matrix can be rearranged in space at a low
deformation-energy cost associated with stretching and com-
pressing the soft matrix. Strong Coulomb forces, due to ac-
cumulation of electronic charge in embedded nanoscale me-
tallic particles, can be a source of such mechanical
deformations. This leads to a scenario where the transport of
electric charge, possibly due to tunneling of electrons be-
tween metal particles, becomes a complex nanoelectrome-
chanical phenomenon, involving an interplay of electronic
and mechanical degrees of freedom.1 Such an interplay can
lead to new physics, as was recently demonstrated theoreti-
cally for the simplest possible structure—a nanoelectrome-
chanical single-electron transistor. The electromechanical in-
stability predicted to occur in this device at large enough bias
voltage was shown to provide a new mechanism of charge
transport.2 This mechanism can be viewed as a “shuttling” of
single electrons by a metallic island—a Coulomb dot—
suspended between two metal electrodes. The predicted in-
stabilily leads to a periodic motion of the island between the
electrodes shuttling charge from one to the other.

The shuttle instability appears to be a rather general phe-
nomenon. It has, e.g., been shown to occur even for ex-
tremely small suspended metallic particlessor moleculesd for
which the coherent quantum dynamics of the tunneling
electrons3 or even the quantum dynamics of the mechanical
vibration4–7 becomes essential. Nanomechanical transport of
electronic charge can, however, occur without any such in-
stability, e.g., in an externally driven device containing a
cantilever vibrating at frequencies of order 100 MHz. A
small metallic island attached to the tip of the vibrating can-

tilever may shuttle electrons between metallic leads as has
recently been demonstrated.8 Further experiments with mag-
netic and superconducting externally driven shuttles, as sug-
gested in Ref. 9, seem to be a natural extension of this work.
Fullerene-based nanomechanical structures10 are also of con-
siderable interest.

The possibility to place transition-metal atoms or ions in-
side organic molecules introduces an additional “magnetic”
degree of freedom that allows the electronic spins to be
coupled to mechanical and charge degrees of freedom.12 By
manipulating the interaction between the spin and external
magnetic fields and/or the internal interaction in magnetic
materials, spin-controlled nanoelectromechanics may be
achieved. An inverse phenomenon—nanomechanical ma-
nipulation of nanomagnets—was suggested earlier in Ref.
11. A magnetic field, by inducing the spin of electrons to
rotate sprecessd at a certain frequency, provides a clock for
studying the shuttle dynamics and a basis for a dc spectros-
copy of the corresponding nanomechanical vibrations.

A particularly interesting situation arises when electrons
are shuttled between electrodes that are half-metals. A half-
metal is a material that not only has a net magnetization as
do ferromagnets, but all the electrons are in the same spin
state; the material is fully spin-polarized. Examples of such
materials can be found among the perovskite maganese ox-
ides, a class of materials that shows an intrinsic, so-called
colossal magnetoresistance effect at high magnetic fieldssof
order 10–100 kOed.13

A large magnetoresistance effect at lower magnetic fields
has been observed in layered tunnel structures where two
thin perovskite manganese oxide films are separated by a
tunnel barrier.13–17 Here the spin polarization of electronic
states crucially affects the tunneling between the magnetic
electrodes. This is because electrons that can be extracted
from the source electrode have their spins aligned in a defi-
nite direction, while electrons that can be injected into the
drain electrode must also have their spins aligned, possibly
in a different direction. Clearly the tunneling probability and,
hence, the resistance must be strongly dependent on the rela-
tive orientation of the magnetization of the two electrodes.
An external magnetic field aligns the magnetization direction
of the two films at different field strengths, so that the rela-
tive magnetization can be changed between high- and low-
resistance configurations. A change in the resistance of
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trilayer devices by factors of order 2–5 have in this way been
induced by magnetic fields of order 200 Oe.14–16 The re-
quired field strength is determined by the coercivities of the
magnetic layers. This makes it difficult to use a tunneling
device of the described type for sensing very low magnetic-
fields. In this paper we propose a different functional
principle—spin-dependent shuttling of electrons—for low-
magnetic-field sensing purposes. We will show that this prin-
ciple can lead to a giant magnetoresistance effect in external
fields as low as 1–10 Oe.

The idea that we propose to pursue is to use the external
magnetic field to manipulate thespin of shuttled electrons
rather than the magnetization of the leads. The possibility to
“trap” electrons on a nanomechanical shuttlesdecoupled
from the magnetic leadsd during quite a long time on the
scale of the time it takes an electron to tunnel on/off the
shuttle makes it possible for even a weak external field to
rotate the electron’s spin to a significant degree. Such a ro-
tation allows the spin of an electron, loaded onto the shuttle
from the spin-polarized source electrode, to be reoriented in
order to allow the electron finally to tunnel from the shuttle
to the spin-polarized drain lead. As we will show below, the
magnetic field-induced spin-rotation of shuttled electrons is a
very sensitive nanomechanical mechanism for a giant mag-
netoresistancesGMRd effect.

II. FORMULATION OF THE PROBLEM: GENERAL
EXPRESSION FOR THE CURRENT

A schematic view of the nanomechanical GMR device to
be considered is presented in Fig. 1. Two fully spin-polarized
magnets with fully spin-polarized electrons serve as source
and drain electrodes in a tunneling device. In this paper we
will consider the situation when the electrodes have exactly
opposite polarization. A mechanically movable quantum dot
fdescribed by a time-dependent displacementxstdg, where a
single energy level is available for electrons, performs forced
harmonic oscillations with periodT=2p /v between the
leads. The external magnetic field is perpendicular to the
orientation of the magnetization in both leads.

The Hamiltonian that governs the dynamical evolution of
the system is

Ĥ = Ĥleads+ Ĥdot + Ĥint; s1d

Ĥleads= o
a,k

«aaa,k
† aa,k;

Ĥdot = o
s

«0as
†as − sgmH/2do

s

as
†a−s − JLstdsa↑

†a↑ − a↓
†a↓d

− JRstdsa↓
†a↓ − a↑

†a↑d;

Ĥint = TLstdo
a

aa,L
† a↑ + TRstdo

a

aa,R
† a↓ + H.c.,

whereaa,k
† ,saa,kd ,k=L ,R, are the creationsannihilationd op-

erators of electrons with energy«a in the leftsrightd leadswe
have suppressed the spin indices for the electronic states in
the leads based on the assumption of full spin polarizationd,
as

†sasd ,s= ↑ ,↓, are the creationsannihilationd operators on
the dot, «0 is the energy of the on-dot level,JLsRdstd
;JLsRd(xstd) are the exchange interactions between the on-
grain electron and the leftsrightd lead, TLsRdstd;TLsRd(xstd)
are the tunnel coupling amplitudes,g is the gyromagnetic
ratio, andm is the Bohr magneton.

The single-electron density matrix describing electronic
transport between the leads may be expressed as

r̂ = o
a,k

wa,kuCa,klkCa,ku. s2d

Here uCa,kl are single-electron states that obey the time-
dependent Shrödingers"=1d equation with the Hamiltonian
s1d. The initial condition has the form

uCa,kst → − `dl = ua,klexps− i«atd,

where ua ,kl is a single-electron state on the leadk with
energy«a.

We will assume that internal relaxation in the leads is fast
enough to lead to equilibrium distributions of the electrons.
Referring to Eq.s2d this means thatwa,LsRd= fs«a7V/2d,
where fs«d is the Fermi distribution function andV is the
applied voltage.

The problem at hand is greatly simplified if one considers
the large bias-voltage limit

V − «0 @ nTmax
2 , s3d

where n is the density of states in the leads andTmax
=maxTL,Rstd. The restrictions3d does not allow us to con-
sider a narrows,nTmax

2 d transition region, where the voltage-
shifted Fermi level in one of the leads crosses the resonant
level on the dot. However, it does cover the case most im-
portant in reality, i.e., when the fully transmissive junction is
strongly affected by electronic spin polarization. Therefore,
in our further considerations we will takewa,L=1, wa,R=0,
and«0=0.

We now calculate the average currentI through the sys-
tem from the standard relation

I =
1

T
E

0

T

dt Trhr̂ ĵj, s4d

FIG. 1. Schematic view of the nanomechanical GMR device: a
movable dot with a single-electron level couples to the leads due to
tunneling of electrons, described by the tunneling probability am-
plitudesTL,Rstd, and to the exchange interaction whose strength is
denoted byJL,Rstd. An external magnetic fieldH is oriented perpen-
dicular to the direction of the magnetization in the leadssarrowsd.
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ĵ = e
]N̂R

]t
= ieTRstdo

a

sa↓
†aa,R − aa,R

† a↓d,

whereN̂R=oaaa,R
† aa,R is the electron number operator for the

right lead.
In general, the stateuCa,Ll can be expressed as

uCa,Lstdl = o
s

cs
astdusl + o

b,k
ck

a,bstdub,kl. s5d

Thus the problem is reduced to determining the coefficients
ck

a,bstd and cs
astd. At this point it is convenient to introduce

the bivectors

ca = Sc↑
a

c↓
a D, e1 = S1

0
D, e2 = S0

1
D ,

so that the coefficientsck
a,b can be expressed asssee Appen-

dix Ad

cR
a,b = − iE

−`

t

dt8ei«bst−t8dTRst8d„e2,c
ast8d…,

cL
a,b = e−i«btdab − iE

−`

t

dt8ei«bst−t8dTLst8d„e1,c
ast8d…. s6d

Here sa,bd is the inner product of two bivectors. As shown
in Appendix A, by using the wide-band approximationsi.e.,
by taking the electron density of states in the leadsn to be
constantd the equation for the bivectorsca takes the form

i
]ca

]t
= R̂stdca + fastd. s7d

Here fastd=TLstde−i«ate1 and the matrixR̂std is

R̂std = S− Jstd − iGLstd/2 − gmH/2

− gmH/2 Jstd − iGRstd/2
D , s8d

where Jstd=JLstd−JRstd and Gkstd=2pnTk
2std is the level

width.
The formal solution of Eq.s7d can be written in the form

castd = − iE
−`

t

dt8L̂st,t8dfast8d, s9d

where the “evolution” operatorL̂st ,t8d, with L̂st ,td= Î, is de-
fined as the solution of the equation

i
]L̂st,t8d

]t
= R̂stdL̂st,t8d, s10d

and obeys the multiplication and periodicity rules

L̂st,t8d = L̂st,t9dL̂st9,t8d, L̂st + T,t8 + Td = L̂st,t8d. s11d

Using Eq. s9d together with Eq.s4d, one can write the
average current on the form

I =
e

T
E

0

T

dtGRstdE
−`

t

dt8GLst8duL21st,t8du2, s12d

whereL21st ,t8d is a matrix element of the operatorL̂st ,t8d;
L21st ,t8d=(e2,L̂st ,t8de1).

Since the probability amplitude for tunneling is exponen-
tially sensitive to the position of the dot, the maximum of the
tunnel exchange interaction between an electron on the dot
and an electron in one lead occurs when the tunneling cou-
pling to the other lead is negligible. This is why we will
assume the following property of the tunneling amplitude
Tkstd to be fulfilled:

TLstdTRstd = 0, TLstd,TRstd Þ 0. s13d

This assumption allows us to divide the time intervals0,Td
into the intervals s0,td+st ,T/2d+sT/2 ,T/2+td+sT/2
+t ,Td. We suppose thatTLstdÞ0 sbut H=0d only in the time
interval s0,td fand, analogously,TRstd;TLst+T/2dÞ0 in
the time intervalsT/2 ,T/2+tdg. Using this approximation

together with the propertiess11d of the operatorL̂st ,t8d, we
arrive at the following expression for the average current
sAppendix Bd:

I =
e

T
s1 − e−Gd2o

n=0

`

u„e2,L̂sT/2,tdL̂ne1…u2. s14d

Here L̂; L̂sT+t ,td and

G = 2pnE
0

t

dtTL
2std s15d

is the probability for an electron to be transferred to the
shuttle during the contact timet. Consequently, in order to
calculate the average current it is necessary to investigate the

properties of the evolution operatorL̂. It follows from its
definition and our approximationfEq. s13dg that

L̂ = e−s1+s3dG/4+is3F0L̂sT,T/2 + tde−s1−s3dG/4−is3F0L̂sT/2,td,

s16d

whereF0=e0
tdtJstd. During the time intervalT/2+t, t,T

swhen under our approximationGLsRd=0d the operatorR̂std is

Hermitian and possesses the symmetry propertiess2R̂* s2

=−R̂. As a consequence, the operatorÛ; L̂sT,T/2+td is
unitary and completely determined by the probability ampli-
tudegeiw for a spin-flip transition. It can be written as

Û = SÎ1 − g2 igeiw

ige−iw Î1 − g2D , s17d

where the modulusg and phasew depend on both the ex-
change interactionJstd and the magnetic fieldH. In addition,

the symmetry propertiess3R̂sT− tds3=−R̂std gives the rela-
tion
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L̂sT/2,td = s1L̂sT,T/2 − tds1. s18d

As a result, with the help of Eqs.s16d ands18d, the operator

L̂ can be expressed as

L̂ = e−G/2se−s3G/4+iF0s3Ûs1d2. s19d

Proceeding with the analysis wesid calculate the eigenval-

ues li and eigenvectorsbi of the operatorL̂ of Eq. s19d,
L̂bi =libi, andsii d substitute the expansionei =aijb j into Eq.
s14d and calculate the average current. The result is

I =
e

T
sinhG/2

coshG/2 + cos 2q

1 + cos 2q coshG/2 + h sinh2 G/2
, s20d

whereq=w+F0 and h=s1+g2d /2g2. Equations20d for the
average current is our main result, which now has to be
analyzed further.

III. CALCULATION OF THE CURRENT IN THE LIMITS
OF STRONG AND WEAK EXCHANGE COUPLING

Although the results20d for the tunnel current is compact,
it is, in general, a rather complicated problem to find the
magnetic-field dependence of the coefficienth, which de-
pends on the probability amplitudeg for flipping the spin of
shuttled electrons. Three different timescales are involved in
the spin dynamics of a shuttled electron. They correspond to
three characteristic frequencies:sid the frequency of spin ro-
tation, determined by the tunnel exchange interaction with
the magnetic leads;sii d the frequency of spin rotation in the
external magnetic field, andsiii d the frequency of shuttle vi-
brations. Different regimes occur depending on the relation
between these time scales. Here we will consider two limit-
ing cases, where a simple solution of the problem can be
found. Those are the limits of weak,J0!mH, and strong,
J0@mH, exchange interactions between the dot and the
leads. HereJ0=maxJstd.

A. Strong exchange interaction between dot and leads

A strong magnetic coupling to the leads,J0@mH, pre-
serves the electron-spin polarization, preventing spin-flips of
shuttled electrons due to an external magnetic field. How-
ever, if the magnetization of the two leads are in opposite
directions, the exchange coupling to the leads have a differ-
ent sign. Therefore, the exchange couplings to the two leads
tend to cancel out when the dot is in the middle of the junc-
tion. Hence the strong exchange interaction affecting a dot
electron depends on time and periodically changes sign, be-
ing arbitrary small close to the time of sign reversal. In Fig.
2 the on-dot electronic energy levels for spins parallel and
antiparallel to the lead magnetization are presented as a func-
tion of time. The effect of an external magnetic field is in the
limit J0@mH negligible almost everywhere, except in the
vicinity of the level crossing. At this “time point,” which we
denotetLZ, the external magnetic field removes the degen-
eracy and a gap is formed in the spectrum. The probability of
electronic spin-flip in this case is determined by the probabil-
ity of a Landau–Zener reflection from the gap formed by the

magnetic fieldsin this case a Landau–Zener transition across
the gap is a mechanism for backscattering of the electron, as
this is the channel where the electronic spin is preservedd.
The matrix operatorÛ, parametrized byg andw in Eq. s17d,
can readily be expressed in terms of the Landau–Zener scat-
tering amplitudes. The phasew=w0+F1, where w0 is the
Landau–Zener phase shift andF1=et

T/2dtJstd, while g2 is
given by the probability of Landau-Zener backscattering,

g2 = 1 − expF−
psgmHd2

8uJ8stLZdu G . s21d

The magnetic-field dependence of the current, calculated
from Eq. s20d using these results, is shown in Fig. 3. The
width dH of the dip at small fields in the functionI = IsHd can
be found directly from Eqs.s20d ands21d. Restoring dimen-
sions one finds that

dH .
1

m
ÎJ0"v. s22d

B. Weak exchange interaction

In the limit J0!mH one may neglect the influence of the
magnetic leads on the on-dot electron-spin dynamics. In this

FIG. 2. On-dot energy levels for spin-up and spin-down electron
states as a function of the position of the dot. The level crossing in
the middle of the device is removed by an external magnetic field,
so that a gap is formed in the energy spectrumsdashed linesd.

FIG. 3. The currentI in units of I0.eG /2T plotted as a function
of normalized magnetic fieldH /dH for the limiting case of a strong
exchange coupling between dot and leads. The valuesG=0.3 and
e0

TdtJstd=p /6 were used for this plot;dH is defined by Eq.s22d.
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case the matrixÛ given by Eq.s17d can easily be calculated
and Eq.s20d reduces to

I =
2e

T

sin2 q/2 tanhG/4

sin2 q/2 + tanh2 G/4
, s23d

whereq=gmet
T/2dtH is the rotation angle of the spin in the

external field.
Two different scales for the external magnetic field deter-

mine the magnetotransmittance in this limit. One scale is
associated with the width in magnetic field of the resonant
behavior of the transmittancefsee the denominator in Eq.
s23dg. This scale is

dH . G
"v

gm
, s24d

wherev=2p /T is the shuttle vibration frequency. The sec-
ond scale,

DH .
"v

gm
, s25d

comes from the periodic function sin2 q /2 that enters Eq.
s23d sthe estimations of bothdH and DH were done under
the natural asumption thatt!Td. The magnetic-field depen-
dence of the current is presented in Fig. 4. Dips in the trans-
mittance of widthdH appear periodically as the magnetic
field is varied, the period beingDH. This amounts to a giant
magnetotransmittance effect. It is interesting to notice that by
measuring the period of the variations inIsHd one can in
principle determine the shuttle vibration frequency. This
amounts to a dc method for spectroscopy of the nanome-
chanical vibrations. Equations25d gives a simple relation
between the vibration frequency and the period of the current
variations. The physical meaning of this relation is very
simple: every time whenv /V=n+1/2, whereV is the spin
precession frequency in the applied magnetic field, the
shuttled electron is able to fully flip its spin to remove the

“spin-blockade” of tunneling between spin polarized leads
having their magnetization in opposite directions.

IV. CONCLUSIONS

The analysis presented above demonstrates the possibility
of a giant magnetotransmittance effect caused by shuttling of
spin-polarized electrons between magnetic source and drain
electrodes. The sensitivity of the shuttle current to an exter-
nal magnetic field is determined, according to Eq.s24d, by
the transparency of the tunnel barriers. By diminishing the
tunneling transmittance one can increase the sensitivity of
the device to an external magnetic field. The necessity to
have a measurable current determines the limit of this sensi-
tivity. In the low transparency limit,G!1, the current
through the device can be estimated asI .eGv. If one de-
notes the critical field that determines the sensitivity of the
device byHcr, one finds from Eq.s24d that Hcr.dH. The
critical field can now be expressed in terms of the current
transmitted through the device as

HcrsOed .
"I

emg
. 102sg0/gdI snAd, s26d

whereg0s=2d is the gyromagnetic ratio for the free electrons.
For I .10−1–10−2 nA and g0/g.1, this gives a rangeHcr
.1–10 Oe. A further increase in sensitivity would follow if
one could use a shuttle with severalsNd electronic levels
involved in the tunneling process. The critical magnetic field
would then be inversely proportional to the number of levels,
HcrsNd=HcrsN=1d /N.
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APPENDIX A

The Shrödinger equation results in equations for the coef-
ficientsck

ab,cs
a

i
]c↑

a

]t
= − Jstdc↑

a − sgmH/2dc↓
a + TLstdo

b

cL
ab, sA1d

i
]c↓

a

]t
= Jstdc↑

a − sgmH/2dc↓
a + TRstdo

b

cR
ab,

i
]cL

ab

]t
= «bcL

ab + TLstdc↑
a,

FIG. 4. The currentI in units of I0.eG /2T plotted as a function
of normalized magnetic fieldH /DH for the limiting case of a weak
exchange coupling between dot and leads.DH is defined by Eq.
s25d and the valueG=0.3 was used.
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i
]cR

ab

]t
= «bcR

ab + TRstdc↓
a.

As it follows from the last two equationsstogether with
the initial conditionsd:

cR
abstd = − iE

−`

t

dt8ei«bst8−tdTRst8dc↓
ast8d, sA2d

cL
abstd = e−i«btdab − iE

−`

t

dt8ei«bst8−tdTLst8dc↑
ast8d.

Therefore, for theobcR
abstd one gets

o
b

cR
abstd = − iE

−`

t

dt8TRst8dc↓
ast8do

b

ei«bst8−td.

In the wide-band approximation we suppose thatns«d
=const, therefore,obei«bst8−td=2pndst8− td and

o
b

cR
abstd = − ipnTRstdc↓

astd. sA3d

Analogously,

o
b

cL
abstd = e−i«at − ipnTLstdc↑

astd. sA4d

Substituting the expressions Eqs.sA3d andsA4d into the first
two equationssA1d, one gets Eq.s7d for the bivectorca.

APPENDIX B

Under our approximation we can change the integration
limits in Eq. s12d

I =
e

T
E

T/2

T/2+t

dtGRstdE
−`

t

dt8GLst8duL̂21st,t8du2. sB1d

Beside this, in the time momentsT/2, t,T/2+t, L̂st ,T/2d
is a diagonal matrix and therefore L̂21st ,t8d
= L̂22st ,T/2dL̂21sT/2 ,t8d. As a consequence, the integral in
the expression for the average currentfEq. sB1dg is factorized

I =
e

T
E

T/2

T/2+t

dtGRstduL̂22st,T/2du2E
−`

t

dt8GLst8duL̂21sT/2,t8du2.

sB2d

The first integral in Eq.sB2d is easy to calculate,

E
T/2

T/2+t

dtGRstduL̂22st,T/2du2 = 1 −e−G, sB3d

where quantityG is defined in Eq.s15d. The second integral
in Eq. sB2d can be transformed in the following manner:

E
−`

t

dtGLstduL̂21sT/2,tdu2

= o
n=0

` E
0

t

dtGLstdu„e2,L̂sT/2,tdL̂st,t − nT…e1…u2.

sB4d

For the quantityL̂st ,t−nTd; L̂st+nT,td one has

L̂st + nT,td = Fp
k=1

n

L̂st + kT,t + sk − 1dTdGL̂st,td

= L̂nst + T,tdL̂st,td. sB5d

Substituting this expression in Eq.sB4d and calculating the
integral in the same manner, as in Eq.sB3d, one gets the Eq.
s14d for the average current.
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