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Using numerical simulation we have studied a magnetization distribution and a process of magnetization
reversal in nanoscale magnets placed above a superconductor plane. In order to consider an influence of the
superconductor on the magnetization distribution in the nanomagnet we have used the London approximation.
We have found that for usual values of London penetration depth the ground state magnetization is mostly
unchanged. But at the same time the fields of vortex nucleation and annihilation change significantly: the
interval where the vortex is stable enlarges on 100–200 Oe for the particle above the superconductor. Such
fields are experimentally observable so there is a possibility of some practical applications of this effect.
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I. INTRODUCTION

In the past few years considerable attention has been de-
voted to the investigations of magnetism in small nanosized
ferromagnetic particles. Such interest is caused by the oppor-
tunities for creating recording devices1–3 and ultrasmall mag-
netic field sensors4 based on the properties of ferromagnetic
particles. It is now well understood that magnetization distri-
bution in a single particle is determined by the competition
between the magnetostatic and exchange energies. If a par-
ticle is small, it is uniformly magnetized and if its size is
large enough a nonuniformsvortexd magnetization is more
energy preferablessee, for example, Refs. 4–7d. Besides the
geometrical form and size, the state of the particle depends
on many other factors. For example, by applying a homoge-
neous magnetic field we can cause nucleation or annihilation
of the vortex. In an array of particles their magnetostatic
interaction may have a strong influence on a particle magne-
tization. If the distance between particles is rather small then
magnetostatic interaction has a strong destabilizing effect on
the vortex state, leading to a significant decrease in both the
nucleation and annihilation fields.8,9

The interplay between the ferromagnetism and supercon-
ductivity can also lead to changes in the magnetization dis-
tribution. It was shown that in a ferromagnetic film put on a
superconducting substrate the size of the domains is up to
Î1.5 times smaller than for a film without a superconducting
substrate.10,11 The experimental investigations revealed
changes in the magnetic field around Al/Ni submicron struc-
tures with a decrease in the temperature to values belowTc.
This effect was referred to the expulsion of the magnetic
field by the superconducting part of the ferromagnetic/
superconductorsFSd hybrid structures.12

All investigations of the FS interaction deal with the
changes of the ferromagnetic domain structure. Therefore the
results thereof cannot be applied to the single-domain nano-
particles. On the one hand, the magnetization of a nanopar-
ticle is more simple than the domain structure of a macro-
scopic ferromagnetic, therefore, theoretical findings could be
proved by experiments with nanoparticles. But on the other
hand, the magnitude of the interaction between the nanopar-

ticles and the superconductor is strongly reduced due to the
large values of the London penetration depth.

In this work we investigate the phase transition between
the single-domain and the vortex state, and the process of
magnetization reversal of a ferromagnetic nanosized cylin-
drical particle placed above the surface of a superconductor.
The superconducting state is described using the London ap-
proximation, that is, we assume that the particle cannot pro-
duce a vortex-antivortex pair. This assumption is not univer-
sally true, since if the particle dimensions are sufficiently
large its magnetic field can destroy the Meijssner state of the
superconductor.13 The criteria of the London approximation
applicability can be obtained in the following way. We con-
sider a cylindrical particle of diameterD and heighth ssee
Fig. 1d. Since we assume thatD@h and anisotropy is small
we consider only the case of single-domain particle with
magnetization perpendicular to the cylindrical axis. Then, the
maximal magnetic flux through the surface of a supercon-
ductor is fm=0.5pDhM, whereM is the magnetization of
the particle. The fluxfm must be less than the flux quantum
f0=2.07310−7 gs sm2 in order to exclude the possibility of
a vortex penetration. We consider a ferromagnetic particle
with a saturation magnetization of aboutMs=800 Oe. Then
we have the following limitation on the particle dimensions:
Dh,163103 nm2. So we consider only the particles which
obey this condition.

The equilibrium distribution of magnetization which gives
a minimum to the energy functional is found by numerical
simulation. For numerical simulation we use the approach

FIG. 1. Ferromagnetic nanoparticle above the surface of
superconductor.
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based on the Landau-Lifshitz-GilbertsLLGd equation for the
dynamics of magnetic moments. This approach enables us to
investigate metastable states which realize the local mini-
mums of the energy functional. The metastable states are of
great importance since the finiteness of the nucleation and
annihilation fields values are the consequence of the energy
barrier between single-domain and vortexlike states. We ob-
tain a phase diagram of the particle in the height/diameter
plane for the transition from the single-domain to the vortex-
like state. We find that for the realistic value of the London
penetration depth the FS interaction is rather weak. The en-
ergy of the FS interaction is about 100 times smaller than the
self energy of the particle. Therefore, the FS interaction has
no influence on the phase diagram. Nevertheless, the magne-
tization curve of the particle in an external homogeneous
magnetic field changes significantly. Even the 1/100 energy
shift means that the superconducting screening current pro-
duces a magnetic field of about 4pM /100,100 Oe which
leads to experimentally observable decrease of the vortex
nucleation field and increase of the annihilation field. The
paper is organized as follows. In Sec. II we derive the ana-
lytical expression for the energy functional of our system. In
Sec. III we show the most important features of the numeri-
cal simulation. In Sec. IV we discuss the results and also
propose possible experiments. Finally, the summary is given
in Sec. V.

II. ENERGY FUNCTIONAL

The system we consider is a ferromagnetic particle placed
above the surface of a superconductorsFig. 1d. We assume
that the superconductor occupies the whole half-space, so it
has only one boundary plane,z=0. The ferromagnetic par-
ticle is assumed to be made of soft magnetic material, so the
energy of anisotropy is equal to zero. Further we will discuss
for which materials this approximation is valid. The total
energy of the system of particle and superconductor reads

E = Ee + Em + Eext. s1d

The first termEe is the energy of the exchange interaction

Ee =
J

2Ms
2E

V

su ¹ Mxu2 + u ¹ Myu2 + u ¹ Mzu2dd3r , s2d

whereJ is the constant of exchange interaction. The second
term Em in Eq. s1d is the magnetostatic energy16

Em = − 1
2E

V

H ·Md3r . s3d

Here H is the sum of magnetic fieldHm induced by the
particle and magnetic fieldHs generated by the supercon-
ducting current

H = Hm + Hs.

The last termEext in Eq. s1d is the energy of the interaction
between the magnetic moment and the external fieldH0:

Eext= −E
V

H0 ·Md3r . s4d

In order to obtain the energy as the functional ofM we
should express the magnetic fieldH in terms ofM . To this
end we should solve the Maxwell-London equations where
the source is a magnetic currentj m=c¹ 3M .

In the space outside the superconductor the system is de-
scribed by the following equations:

¹ 3 B =
4p

c
j m, s5d

¹ ·B = 0, s6d

where we introduce the vector of magnetic inductionB=H
+4pM . The superconductor is described by the equations

¹ 3 B =
4p

c
j s s7d

B = − lL
24p

c
¹ 3 j s, s8d

wherej s is the superconducting current andlL is the London
penetration depth. For the boundary conditions we take the
continuity of the magnetic inductionB and its derivatives at
the boundary planez=0. Since the Maxwell-London equa-
tions are linear, we first can consider a single magnetic di-
pole placed at the pointr 0=sx0,y0,z0d above the surface of
the superconductor

M = mdsr − r 0d,

wherem is the magnetic dipole moment. Once this problem
is solved, we can construct the solution for any magnetiza-
tion distribution. After a bit troublesome but straightforward
computation, we obtain the solution to the single-dipole
problem at the half-spacez.0 in the form

B = − ¹ f + 4pM ,

where the magnetic potentialf is

f = fd + frefl + fl. s9d

The first termfd in Eq. s9d is the potential of a single mag-
netic dipole without a superconductor

fdsr d = − m · ¹
1

ur − r 0u
.

The second termfrefl is the potential of the magnetic dipole
reflected at the planez=0:

freflsr d = − m* · ¹
1

ur − r 0
* u

,

where

r 0
* = sx0,y0,− z0d,

m* = smx,my,− mzd.

The third termfl in Eq. s9d appears due to the finiteness of
the London penetration depth valuelL. The expression for
fl is
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flsr d = − m* · ¹ gsr − r 0
*d, s10d

where

gsr d = lL
2E

0

`

2k2exps− kzdJ0skrddk

− lL
2E

0

`

2ksk2 + lL
−2d1/2exps− kzdJ0skrddk,

r = sx2 + y2d1/2.

Here J0sxd is the Bessel function. Then the single dipole
magnetic field above the surface of the superconductor is
expressed as

Bsr d = Hsr d + 4pmdsr − r 0d,

Hsr d = D̂sr ,r 0dm,

whereD̂ is the modified dipole matrix

D̂sr ,r 0d = D̂dsr − r 0d + D̂ssr − r 0
*d. s11d

Here the first term is an ordinary dipole matrix

Ddx1x2
sr d =

]2

]x1 ] x2

1

ur u
,

and the second term appears due to the presence of the su-
perconductor

Dsx1x2
sr d = s− 1ddz,x2

]2

]x1 ] x2
Fgsr d +

1

ur uG ,

where indexesx1 andx2 denote coordinatesx,y,z anddz,x2
is

the Kroneker’s symbol.
Let us now consider continuous distribution of the mag-

netic momentM sr d. The magnetic field generated by the
superconducting current is given as a sum of single-dipole
solution

Hs =E
V

D̂ssr − r 0
*dM sr 0dd3r 0.

For the magnetic fieldHm generated by the magnetic current
we cannot take the sum of the single-dipole fields since the

dipole matrixD̂dsr d has a nonintegrable singularity at point
r =0. Therefore, the expression forHm that we use is

Hmsr d = −E
V

¹ ·M sr 0d
r − r 0

ur − r 0u3
d3r 0

+E
]V

fM sr 0d ·nssr 0dg
r − r 0

ur − r 0u3
d3r 0.

Here,V and]V are the volume and surface of a particle and
ns is the unit vector of the external normal to the surface at a
current point.

Finally, we consider the energy functional consisting of
the self-energy of particleE0, the energy of interaction with
the superconductorEint and with external fieldEext

E = E0 + Eint + Eext.

Self-energyE0 includes exchangeEe energy and the partEd
of magnetostatic energyEm:

E0 = Ee + Ed,

where

Ed = −
1

2
E

V

Hm ·Md3r = −
1

2
E

V3V

f¹ ·M sr dg

3f¹ ·M sr 8dg
d3rd3r 8

ur − r 8u
+

1

2
E

V3]V

f¹ ·M sr 8dg

3fM sr d ·nsg
d3rd3r 8

ur − r 8u
−

1

2
E

]V3]V

fM sr 8d ·ns8g

3fM sr d ·nsg
d3rd3r 8

ur − r 8u
.

The energy of interactionEint of the particle with the super-
conductor is the energy of the magnetic moment in the field
produced by the superconducting current, and it is the other
part of the magnetostatic energyEm:

Eint = − 1
2E

V

Hs ·Md3r

= − 1
2E

V3V

M sr d · D̂ssr ,r 0dM sr 0dd3r d3r 0.

The energyEext is the same as in Eq.s1d and is given by Eq.
s4d.

III. NUMERICAL SIMULATION

To perform numerical calculation we use the same ap-
proach as in Refs. 9 and 14. The basis of our numerical
simulation is the LLG equation for magnetization Msr , td of
a particle in the form

]M

]t
= −

g

1 + a2fM ,Heffg −
ag

s1 + a2dMs
†M ,fM ,Hef fg‡,

s12d

where g is the gyromagnetic ratio,a is the dimensionless
damping parameter andt is time. The effective fieldHef f is a
variation derivative of the energy functional

Hef f = −
dE

dM
.

The important feature of the LLG equation is that it de-
scribes the evolution of the magnetization distribution to the
equilibrium. By varying the initial conditions we find differ-
ent equilibrium states of our system. Then we choose the
equilibrium state with the minimal energy to obtain the
ground state. Choosing as the initial state the vortexlike or
single-domain distribution and varying the external fieldH0
we determine the vortex annihilation or nucleation field as
the critical field of transformation of the vortexlike to single-
domain state or vice versa.
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To avoid a three-dimensional grid problem to be solved
which needs large computer resources we assume that mag-
netization of a cylindrical particle does not depend on the
coordinatez along the cylindrical axis. Then we integrate the
relations for the energy overz andz0 and obtain the energy
as a functional of the magnetization which is a function of
only two space variables. Then we define the effective field
Hef f as a variation derivative of the obtained functional. The
effective field does not depend onz either, so we have a
three-dimensional problem reduced to the two-dimensional
one.

To develop a numerical method we divide the particle into
rectangular parallelepipeds with a square base of sizea in the
planesx,yd and of heighth and obtain approximate expres-
sions for different parts of the energy functional using the
grid values of magnetizationM =fMxsrd ,Mysrd ,Mzsrdg.

The expression for the magnetostatic energyEd reads

EdfM g = −
a4

2 o
rÞr8

M sr8d · D̂d
hsr − r8dM srd + Ed

0, s13d

wherer=sx,yd are the points of the square grid with stepa

on the sx,yd plane and matrixD̂d
h is the dipole matrixD̂d

integrated over thez coordinate

D̂d
hsrd =E

0

h

dzE
−z

h−z

D̂dsr,z8ddz8.

The additional termEd
0 in Eq. s13d appears as the contribu-

tion of self-interaction in the cell. It depends only on the
value of magnetization which is assumed constant, so it does
not influence the effective field.

The expression for the exchange energy reads

EefM g =
Jh

2Ms
2o

r
o
r8

uM srd − M sr8du2. s14d

The internal summation in Eq.s14d is taken over all neigh-
borsr8 of the pointr.

The energyEext and the interaction energyEint are, respec-
tively:

Eext= − a2ho
r

H0 ·M srd, s15d

EintfM g = −
a4

2 o
rÞr8

M sr8d · D̂s
hsr − r8dM srd, s16d

where matrixD̂s
h is

D̂s
hsrd =E

d

d+h

dzE
z+d

z+d+h

D̂ssr,z8ddz8.

We choose the cell size considering two factors. On one
hand, the size of the cell should be smaller than the charac-
teristic exchange interaction lengthsÎJ/Ms

2d in order to de-
scribe the inhomogeneous magnetization correctly. On the
other hand, we cannot choose it very small because of the
computation time limitations.

IV. RESULTS AND DISCUSSION

For computation we choose the following parameters: the
saturation magnetizationMs=800 Oe, the exchange interac-
tion constantJ=10−6 erg/sm. The cell size is 3 nm33 nm,
while the exchange interaction length is approximately 13
nm. The distanced and the London penetration depth have a
strong influence on the interaction between a particle and a
superconductor. For superconductors withlL,50–100 nm
the interaction should be largely reduced, since such values
of lL are comparable to the size of the particle. To compen-
sate for this reduction we can make the distanced small. We
choosel=50 nm andd=5 nm since such values are experi-
mentally obtainable and make the effect of a particle-
superconductor interaction quite distinctive.

First of all, we investigate how the energy of the interac-
tion between the particle and the superconductor depends on
the value oflL. We calculate the interaction energyEint for
the particle with a single-domain and vortexlike magnetiza-
tion sFig. 2d. The dimensions of the particle are:h=10 nm
and D=50 nm. The self-energy of this particle isE0
=1.2122310−11 erg for the single domain state andE0
=1.8856310−11 erg for the vortex one. The interaction en-
ergy decreases rapidly whenlL changes from 0 to 30–40 nm.
For larger values oflL the interaction energy tends to zero
asymptotically. At practically interesting valueslL
,50–100 nm the interaction energy is aboutEint,0.0268
310−11 erg for the single-domain magnetization andEint
,0.0014310−11 erg for the vortexlike magnetization. Thus
the interaction with a superconductor is much stronger for a
single-domain particle. This is easily understood because the
vortexlike magnetization produces a much weaker magnetic
field than the single-domain magnetization. The interaction
energy for the real values oflL,50 nm is much smaller
than the particle self-energy: for the single-domain magneti-
zation it isEint /E0,0.02.

Then we study the ground state of the particle interacting
with the superconductor. We define the ground state as a
stable state with the lowest energy. There are two possible
stable states for the particle: vortexlike and single-domain
states. We obtain a phase diagramssee Fig. 3d where in the
area above the phase boundary the ground state is vortexlike
and below the boundary it is single domain. Different curves
in Fig. 3 correspond to different values oflL.

Each phase boundary in Fig. 3 has basic properties com-
ing from the origin of phase transitions in a ferromagnetic

FIG. 2. The energy of interaction of a single-domainsfilled
circlesd and vortexlikesopen circlesd magnetized particle with a
superconductor as a function oflL.

A. A. FRAERMAN et al. PHYSICAL REVIEW B 71, 094416s2005d

094416-4



nanoparticle.15 They are determined by the interplay between
the magnetostatic and exchange energy. In relatively large
particles the ground state is vortexlike. When the dimensions
sdiameterD or heighthd of the particle are reduced then the
single domain state becomes the ground one. The supercon-
ductor influence shows up through an enlargement of the
area of small-sized particles having the vortexlike state. It is
clear that the shift of the phase boundary in comparison to
the casel=` depends on the ratio of the interaction energy
to the self-energy of the single-domain particle:Eint /E0.
Since this ratio is very smallEint /E0=0.02!1 at ll =50 nm,
the phase boundary remains almost unchanged.

But the phase boundary between the two ground states is
not important because at the large area around this curve on
the phase diagram both the single-domain and the vortexlike
states are stable. When we cross the phase boundary from a
large size to a smaller one, the vortexlike state becomes
metastable, i.e., it is not the ground state but it does not
transform to the single-domain state. This is also true for the
single-domain state. The example of the area of metastability
is shown in Fig. 4.

Thus it is more important to investigate the boundary be-
tween the area of metastability and the absolute instability of
the vortexlike or the single-domain state. This boundary de-
pends on the external magnetic fieldH0. It was found out
that applying the in-plane fieldH0 we can cause nucleation
of the vortex, i.e., make the single-domain state unstable,
annihilation of the vortex, i.e., make the vortexlike state

unstable.8,9 Practically, it is more convenient to vary the ex-
ternal magnetic field than the dimensions of the particle. That
is why we investigate the vortex annihilation,Hann sFig. 5d
and nucleation,Hnucl sFig. 6d fields as functions of particle
diameterD. The height of the particle is fixed:h=20 nm.

The nucleation and annihilation of the vortex are parts of
the process of magnetization reversal in a particle driven by
the external magnetic field. If the particle is initially found in
the single-domain state, then by applying external fieldH0 in
the opposite to the magnetic moment direction we first
stimulate a transition to the vortexlike state, i.e., nucleation
of the vortex. When we increase the external field further, the
vortex annihilates and the particle comes to the single-
domain state again but with a reversed magnetic moment.
Note that the annihilation fieldHann as always positive for
the particle withh=20 nmssee Fig. 5d. The nucleation field
Hnucl becomes negative when the diameterD is large enough
ssee Fig. 6d. This means that the single-domain state is un-
stable and the external field should be applied in order to
prevent the nucleation of the vortexlike state. In more detail
we investigate the magnetization reversal for a particle of
D=100 nm and heighth=20 nm. At the zero field the par-
ticle is in the single-domain state with an average magnetic
moment directed along thex axis. The external field is ap-
plied in the opposite direction to the initial magnetic mo-
ment. The magnetization curve for this particle is shown in
Fig. 7s1d. This curve describes the dependence of the average
x component of the magnetic momentMx on the external

FIG. 3. Phase diagram of the vortex-single domain state transi-
tion. Filled circles—lL=`, open circles—lL=0, triangles—lL

=10 nm, and rhombus—lL=50 nm.

FIG. 4. Example of the metastability areasbetween the curvesd
of the vortexlike state. The upper curvesfilled circlesd is the bound-
ary of the vortexlike state stability region, the lower curvesopen
circlesd is the phase boundary between the vortexlike and single-
domain ground states.

FIG. 5. The critical fieldHann of vortex annihilation as a func-
tion of diameterD. The height of the particleh=20 nm. The curve
marked with filled circles is forlL=`, with open circles forl
=50 nm.

FIG. 6. The critical fieldHnucl of vortex nucleation as a function
of diameterD. The height of the particleh=20 nm. The curve
marked with filled circles is forlL=`, with empty circles forl
=50 nm.
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magnetic field. The distribution of magnetization at the
stages of the magnetization reversal process is shown in Fig.
7s2d.

The influence of a superconductor shows up in the re-
duced value of the average magnetic moment, because it
decreases the interaction energyEint. Therefore, the nucle-
ation field for the particle placed above the superconductor is
smaller and the annihilation field is larger than for the par-
ticle in the absence of superconductor. The difference be-
tween these fields increases with the size of the particlessee
Figs. 5 and 6d. When the diameter is quite large:D
.100 nm the shift of the nucleation and annihilation fields is
about 100–200 Oe. As we have noted before, this shift
should be of order of the field produced by the superconduct-
ing currentHs. To verify our results we findkHsl averaged

over thez coordinate:kHslsx,yd=e0
hHssx,y,zddz/h. For an

example we take a single-domain particle withD=150 nm
andh=20 nm. In Figs. 8sad–8scd we show the components of
kHsl inside the particle. The magnetic field is normalized to
the saturation magnetizationMs=800 Oe.

Thex component of magnetic fieldkHsl is the largest and
it varies from 0.12Ms<100 Oe at the center of the particle to
0.06Ms<50 Oe at the edges. ThusDHnucl andDHann should
be about 50–100 Oe. According to the results of simulation,
the shift of the nucleation field for the cylindrical particle
with D=150 nm isDHnucl=110 Oessee Fig. 6d and the shift
of the annihilation field isDHnucl=−120 Oe ssee Fig. 5d.
Therefore, our estimation gives the right order ofDHann and
DHnucl.

In our analysis we have neglected a magnetic anisotropy
energy. In order for the effect of anisotropy on the vortex
nucleation and annihilation magnetic fields to be neglible the
anisotropy energy should be much smaller then the energy of
F/S coupling. How it follows from our results, the magnetic
field produced by the superconductor interacting with the
single-domain nanoparticle is about 50–100 Oe. Then, the
effective field of anisotropy should be smaller than 50 Oe.
Magnetic materials which satisfy this condition are known to
exist. For example, the anisotropy constant of permalloy is
usually taken 1000 erg/sm3, and its saturation magnetization
is 800 Oessee Ref. 17d, which corresponds to the field of
anisotropy of 2.5 Oe.

FIG. 7. s1d The process of magnetization reversal forlL=`
sopen circlesd and lL=50 nm sfilled circlesd. The particle dimen-
sions are h=20 nm, D=100 nm, sad,sdd single-domain states,
sbd,scd vortexlike state.s2d The evolution of magnetization distribu-
tion during the process of magnetization reversal.

FIG. 8. sad-scd The level curves for the components
kHsxl ,kHsyl ,kHszl of the magnetic field produced by the supercon-
ducting current.sdd Magnetization of the particle.D=150 nm,h
=20 nm, lL=50 nm.
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Let us now consider some possible experimental investi-
gations based on the effects which we have described. Plac-
ing a ferromagnetic particle with diameterD=100 –200 nm
and heighth=20 nm above the superconductor and cooling it
below its critical temperatureTc we will have well observ-
able shiftsDHnucl and DHann of about 100–200 Oe. More-
over, the shift of the annihilation fieldDHann enables us to
realize a selective magnetization reversal in an array of fer-
romagnetic particles placed above the superconductor. If we
neglect the interparticle interaction, then the magnetization
curve of each particle is like the one shown in Fig. 7.

Let us assume that initially all particles in the array are in
the vortexlike state. Applying the magnetic field of magni-
tude betweenHannsT,Tcd and HannsT.Tcd fsee Fig. 9s1dg
will lead to a reversible displacement of the vortex core
within each particlefsee Fig. 9s2adg. If then we destroy the

superconductivity around one of the particles, it will imme-
diately fall into the single-domain statefsee Fig. 9s2bdg. By
removing the magnetic field we will have all particles get
back to the initial state except for the one which will remain
in the single-domain state. Thus we can operate with a single
particle in an array without disturbing the state of other par-
ticles.

V. CONCLUSION

We presented the results of the numerical investigation of
the magnetization reversal process in an external magnetic
field of a ferromagnetic particle placed above the surface of a
superconductor. The numerical simulation is based on solv-
ing the Landau-Lifshitz-Gilbert equation for the dynamics of
magnetic moment. The superconductor is in the Meijssner
state and the only parameter that affects the interaction be-
tween the particle and the superconductor is the London pen-
etration depthlL.

We have shown that for a realistic value oflL=50 nm the
interaction energy is much smaller than the self-energy of the
particle and the ground state of the particles does not change
significantly. But nevertheless, the magnetic field generated
by the superconducting current leads to a decrease of the
nucleation field and to an increase of the annihilation field by
100–200 Oe. Based on the effect of the annihilation field
shift when the superconductor is cooled to temperatures be-
low Tc we describe the method of a selective magnetization
reversal in an array of ferromagnetic particles.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. DOE, Office
of Science, under Contract No. W-31-109-ENG-38, by the
Russian Foundation for Basic Research, Grant No. 03-02-
16774, and by the Russian Ministry of Science and Educa-
tion under the Program Development of scientific potential
of Higher School.

1S. Tehrani, E. Chen, M. Durlam, M. DeHerrera, J. M. Slaughter,
J. Shi, and G. Kerszykowski, J. Appl. Phys.85, 5822s1999d.

2S. Y. Chou, Proc. IEEE85, 652 s1997d.
3C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud,

M. Hwang, M. Walsh, M. C. Abraham, and R. J. Ram, J. Vac.
Sci. Technol. B17, 3168s1999d.

4R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, and M. E.
Welland, J. Appl. Phys.87, 7082s2000d.

5A. M. Kosevich, M. P. Voronov, and I. V. Manzhos, Zh. Eksp.
Teor. Fiz. 52 148 s1983d.

6Y. Ishii and Y. Nakazava, J. Appl. Phys.81, 1847s1996d.
7A. Aharoni, J. Appl. Phys.68, 2892s1990d.
8K. Yu. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fuka-

michi, Phys. Rev. B65, 024414s2001d.
9A. A. Fraerman, S. A. Gusev, L. A. Mazo, I. M. Nefedov, Yu. N.

Nozdrin, I. R. Karetnikova, M. V. Sapozhnikov, I. A. Shere-
shevskii, and L. V. Sukhodoev, Phys. Rev. B65, 064424s2002d.

10E. B. Sonin, Phys. Rev. B66, 136501s2002d.
11L. N. Bulaevskii and E. M. Chudnovsky, Phys. Rev. B63,

012502s2001d.
12S. V. Dubonos, A. K. Geim, K. S. Novoselov, and I. V. Grig-

orieva, Phys. Rev. B65, 220513sRd s2002d.
13M. J. Van Bael, J. Bekaert, K. Temst, L. Van Look, V. V. Mosh-

chalkov, Y. Bruynseraede, and G. Borghs, Phys. Rev. Lett.86,
155 s2001d.

14A. A. Fraerman, I. R. Karetnikova, I. M. Nefedov, A. V. Sapozh-
nikov, and I. A. Shereshevskii, Phys. Met. Metallogr..92, S226
s2001d.

15R. P. Cowburn and M. E. Welland, Appl. Phys. Lett.72, 2041
s1998d.

16S. Erdin, A. F. Kayali, I. F. Lyuksyutov, and V. L. Pokrovsky,
Phys. Rev. B66, 014414s2002d.

17A. Aharoni, Introduction to the Theory of FerromagnetismsOx-
ford University Press, New York, 2000d.

FIG. 9. s1d Part of the magnetization curve near the annihilation
of the vortex.s2d Selective magnetization reversal in an array of
ferromagnetic particles.
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