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We investigate the suppression of superconducting transition temperature in granular metallic systems due to
sid fluctuations of the order parametersbosonic mechanismd andsii d Coulomb repulsionsfermionic mechanismd
assuming large tunneling conductance between the grainsgT@1. We find the correction to the superconducting
transition temperature for 3d granular samples and films. We demonstrate that if the critical temperatureTc

.gTd, whered is the mean level spacing in a single grain, the bosonic mechanism is the dominant mechanism
of the superconductivity suppression, while for critical temperaturesTc,gTd the suppression of superconduc-
tivity is due to the fermionic mechanism.
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I. INTRODUCTION

Being an experimentally accessible electronic system with
the tunable parameters,1–6 granular superconductors offer a
unique testing ground for studying combined effects of dis-
order, Coulomb interactions, and superconducting fluctua-
tions that govern the physics of disordered superconductors
and are central to mesoscopic physics. One of the fundamen-
tal questions long calling for investigation is the problem of
suppression of the superconducting critical temperatureTc in
granular superconductors and the role played in this suppres-
sion by the Coulomb repulsion and superconducting fluctua-
tions. In this paper we present a quantitative theory of the
suppression ofTc in granular samples.

The customary belief was that—according to the Ander-
son theorem7—disorder leaves critical temperature of a su-
perconductor intact. However this result holds only in the
mean-field BCS approximation, and in all the cases where
the extension beyond the BCS approximation is required,
one can expect a noticeable suppression of the critical tem-
perature.

The main mechanisms of the superconductivity suppres-
sion are Coulomb repulsion and superconducting fluctua-
tions. For example, disorder shifts significantly the supercon-
ducting transition temperature in the 2d thin films.8–12 The
physical reason for the suppression of the critical tempera-
ture is that in thin films the interaction amplitude in the su-
perconducting channel decreases because of peculiar
disorder-induced interference effects that enhance the effec-
tive Coulomb interaction. On the technical side, in order to
evaluate the effect of disorder, one should sum a certain class
of diagrams that include, in particular, cooperons and diffu-
sons. In the subsequent discussion we will be referring to this
mechanism of the superconductivity suppression as thefer-
mionic mechanism.

The superconducting transition temperature can also be
reduced by the fluctuations of the order parameter, the effect
being especially strong in low dimensions. The correspond-
ing mechanism of the superconductivity suppression is called

the bosonicmechanism. In particular, the bosonic mecha-
nism can lead to the appearance of the insulating state at zero
temperature. The physics of this state can be most easily
understood in the case of a granular sample with weak inter-
granular coupling: the Cooper pair can be localized on a
single grain if the charging energy is larger than the Joseph-
son energy corresponding to the intergranular coupling.13

Later it was shown14 that a similar mechanism of Cooper-
pair localization appears even in the case of the homo-
geneously disordered films, and the superconductor to insu-
lator transition was predicted to occur at zero temperature.

In this paper we study the corrections to the supercon-
ducting transition temperature in granular metals perturba-
tively. Although this approach is restricted and cannot be
used for study of nonperturbative effects, such as the
superconductor-to-insulator transition, it is useful in a sense
that both relevant mechanisms of the critical temperature
suppression can be studied systematically within the same
framework. The power of the perturbative calculation in the
study of granular metals was demonstrated in that it revealed
an important energy scaleG=gTd, which was missed, for
example, by the effective phase-functional formalism, where
gT is the tunneling conductance between the grains andd is
the mean energy-level spacing for a single grain, appearing
in granular materials. The presence of this energy scale,
which has a simple physical interpretation of an inverse av-
erage time that an electron spends in a single grain before
tunneling to one of the neighboring grains,15 brings into play
behaviors that are absent in homogeneous media. In particu-
lar, the twodifferent transport regimes at high,T.G, and
low, T,G, temperatures appear.16 In the high-temperature
regime the correction to the conductivity due to the Coulomb
interaction depends logarithmically on temperature in all di-
mensions, whereas at low temperatures the interaction cor-
rection to conductivity has the Altshuler-Aronov form17 and,
thus, is very sensitive to the dimensionality of the sample.

In a view of these findings one may expect that the cor-
rection to the superconducting transition temperature can
also be different depending on whether the temperture is
larger or smaller than the energy scaleG.
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In the present paper we analyze the mechanisms of the
suppression of superconductivity in both temperature re-
gimes. We find that the fermionic mechanism is temperature
dependent and that its contribution is strongly reduced in the
regionT.G. In this regime the bosonic mechanism of theTc
suppression becomes dominant. In the low-temperature re-
gime,T,G, the correction to the critical temperature is simi-
lar to that obtained for homogeneously disordered metals. In
this regime the fermionic mechanism plays the major role as
long as the intergranular tunneling conductance is large.

The paper is organized as follows. In Sec. II we summa-
rize the results for the suppression of superconducting tran-
sition temperature of granular metals. In Sec. III we compare
our results for the suppression of superconductivity in granu-
lar metals to known results for homogeneously disordered
systems. In Sec. IV we introduce the model; the effect of
fluctuations and Coulomb interaction on the superconducting
transition temperature is then discussed in Sec. V. The math-
ematical details are relegated to the Appendixes.

II. SUMMARY OF THE RESULTS

It is convenient to discriminate corrections due to bosonic
and fermionic mechanisms and write the result for the sup-
pressionDTc of the superconductor transition temperature in
a form

DTc

Tc
= SDTc

Tc
D

b
+ SDTc

Tc
D

f
, s1ad

where the two terms on the right-hand side correspond to the
bosonic and fermionic mechanisms, respectively. The critical
temperatureTc in Eq. s1ad is the BCS critical temperature.

We find that at high temperatures,T.G, the fermionic
correction to the superconducting transition temperature does
not depend on the dimensionality of the sample

SDTc

Tc
D

f
= − c1

d

Tc
, d = 2,3, s1bd

where c1=7zs3d /2p2−sln 2d /4 is the numerical coefficient
andd is the dimensionality of the array of the grains.

In the low-temperature regime,T,G, the fermionic
mechanism correction to the superconducting transition tem-
perature depends on the dimensionality of the sample and is
given by

SDTc

Tc
D

f
= −5

A

2pgT
ln2 G

Tc
, d = 3

1

24p2gT
ln3 G

Tc
, d = 2,6 s1cd

where A=gTa3ed3q/ s2pd3«q
−1<0.253 is the dimensionless

constant,a is the size of the grain, and

«q = 2gTo
a

s1 − cosqad s1dd

with haj being the lattice vectorsswe consider a periodic
cubic lattice of grainsd. Note that in the low-temperature re-
gime, T,G, the correction to the critical temperature in the

dimensionalityd=2 coincides with that obtained for homo-
geneously disordered superconducting films upon the substi-
tution G→t−1.

On the contrary, the correction to the transition tempera-
ture due to the bosonic mechanism in Eq.s1ad remains the
same in both regimes and is given by

SDTc

Tc
D

b
= −5

14Azs3d
p3

1

gT
, d = 3

7zs3d
2p4gT

ln
gT

2d

Tc
, d = 2,6 s1ed

wherezsxd is thez function and the dimensionless constantA
was defined below Eq.s1cd. Note that the energy scaleG
does not appear in this bosonic part of the suppression of
superconducting temperature in Eq.s1ed. This stems from the
fact that the characteristic length scale for the bosonic
mechanism is the coherence lengthj, which is much larger
than the size of a single grain. The result for the two dimen-
sional case in Eq.s1ed is written with a logarithmic accuracy,
assuming that lnsgT

2d /Tcd@1.
The above expression for the correction to the transition

temperature due to the bosonic mechanism was obtained in
the lowest order in the propagator of superconducting fluc-
tuations and holds, therefore, as long as the value for the
critical temperature shift given by Eq.s1ed is larger than the
Ginzburg regionsDTdG

sDTdG ,5
1

gT
2

Tc
2

gTd
d = 3,

Tc

gT
d = 2.6 s2d

Comparing the correction to the transition temperatureTc
given by Eq.s1ed with the width of the Ginzburg regionfEq.
s2dg, one concludes that for 3d granular metals the perturba-
tive results1ed holds if

Tc , gT
2d. s3d

In two dimensions the correction to the transition tempera-
ture in Eq.s1ed is only logarithmically larger thansDTdG in
Eq. s2d. The two-dimensional results1ed with the logarithmic
accuracy holds in the same temperature intervals3d as for
three-dimensional samples.

Note that inside the Ginzburg region the higher-order
fluctuation corrections become important. Moreover, the
nonperturbative contributions that appear, in particular,
because of superconducting vortices should be taken into
account as well. These effects destroy the superconducting
long-range order and lead to Berezinskii-Kosterlitz-Thouless
transition in 2d systems.

To summarize our results, we find that the correction to
the superconducting transition temperature of granular met-
als comes from two different mechanismssthe dominant
mechanism depends on temperature ranged: sid In the low-
temperature regime,T,G, the fermionic mechanism is the
main mechanism of the suppression ofTc and the correction
to the transition temperature is given by Eq.s1cd; andsii d in
the high-temperature regime,T.G, the dominant mecha-
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nism is bosonic. At moderate temperatures,T,gT
2d, the cor-

rection to the transition temperature is perturbative and is
given by Eq.s1ed, while at higher temperaturesT.gT

2d, the
superconducting transition temperature must be determined
by considering the critical fluctuations in the effective
Ginzburg-Landau functional.

III. COMPARISON OF THE SUPPRESSION OF
SUPERCONDUCTIVITY IN GRANULAR AND
HOMOGENEOUSLY DISORDERED SYSTEMS

In this section we compare our results for the suppression
of superconductivity to the known results obtained for homo-
geneously disordered superconductors. We begin our discus-
sion with homogeneously disordered samples briefly
reminding what is known about suppression of superconduc-
tivity in this case.

Both mechanisms of the suppression of superconductivity
in homogeneously disordered films were discussed in several
publications.8–11,14 In particular, for films with thicknessd
such thatl !d!j, wherel is the electron mean-free path and
j is the coherence length, it was shown that the result for
the suppression of superconducting critical temperature can
be written in analogous form with Eq.s1ad, DTc/Tc
=sDTc/Tcd f +sDTc/Tcdb, where8

SDTc

Tc
D

f
= −

1

24p2g
ln3f1/stTcdg, s4ad

and

SDTc

Tc
D

b
= −

7zs3d
2p4g

lnfg/stTcdg. s4bd

Hereg@1 is the film conductancesper one spin componentd
and t is the elastic electron mean-free time. One can see
from Eqs.s4d that in the regime of large conductance within
the logarithmic accuracy, the fermionic mechanism is the
dominant one. At the same time, if the conductance is not too
large both corrections become of the order of one and the
bosonic mechanism becomes very important as well. In this
regime the suppression of superconductivity should be con-
sidered nonperturbativelly as in Ref. 14 for the bosonic
mechanism and in Ref. 10 for the fermionic mechanism.

In granular superconductors the situation is different be-
cause of appearance of the energy scaleG=gTd. As one can
see from Eqs.s1d both mechanisms of the suppression of
superconductivity are important. In the limit of high tem-
peratures,T.G, the interference effects in granular metals
are suppressed and that is why the fermionic mechanism is
strongly reducedfEq. s1bdg. The shift of the superconducting
critical temperature in this region is defined by the bosonic
mechanism and has a classic origin. In the low-temperature
limit, T,G, quantum interference effects become important
therefore, the suppression of superconductivity is defined by
the fermionic mechanism. The fact that in the low-
temperature regime the correction to the superconducting
transition temperature for granular samples can be obtained
from the corresponding result for the homogeneously disor-
dered samples via the substitution of the effective diffusion

coefficient D=gTda2 suggests that the universal low-
temperature description proposed in Ref. 18 can be general-
ized to include the superconducting channel.

IV. THE MODEL

Now we turn to the quantitative description of our model
and derivation of Eqs.s1ad, s1cd, and s1ed. We consider a
d-dimensional array of superconducting grains in the metal-
lic state. The motion of electrons inside the grains is diffu-
sive, and they can tunnel between grains. We assume that if
the Coulomb interaction were absent, the sample would have
been a good metal atT.Tc.

The Hamiltonian of the system of the coupled supercon-
ducting grains is

Ĥ = Ĥ0 + Ĥc + Ĥt. s5ad

The termĤ0 in Eq. s5ad describes isolated disordered grains
with an electron-phonon interaction

Ĥ0 = o
i,k

ei,kai,k
† ai,k − l o

i,k,k8

ai,k
† ai,−k

† ai,−k8ai,k8 + Ĥimp, s5bd

where i labels the grains,k;sk , ↑ d, −k;s−k , ↓ d; l.0 is
the interaction constant;ai,k

† sai,kd are the creationsannihila-
tiond operators for an electron in the statek of the ith grain;

and Ĥimp represents the elastic interaction of the electrons

with impurities. The termĤc in Eq. s5ad describes the Cou-
lomb repulsion both inside and between the grains and is
given by

Ĥc =
e2

2 o
i j

n̂iCij
−1n̂j , s5cd

whereCij is the capacitance matrix andn̂i is the operator of
the electron number in theith grain.

Equations5cd describes the long-range part of the Cou-
lomb interaction, which is simply the charging energy of the
grains. The last term on the right-hand side of Eq.s5ad is the
tunneling Hamiltonian

Ĥt = o
i j ,p,q

tijai,p
† aj ,q, s5dd

where tij is the tunneling matrix element corresponding to
the points of contact ofith and j th grains andp, q stand for
the states in the grains.

In the following section we will study effects of fluctua-
tions on the superconducting transition temperature of granu-
lar metals based on the model defined by Eqs.s5d.

V. EFFECTS OF FLUCTUATIONS AND COULOMB
INTERACTION ON TRANSITION TEMPERATURE

The superconducting transition temperature can be found
by considering corrections to the anomalous Green’s func-
tion F due to fluctuations of the order parameter and Cou-
lomb interaction in the presence of infinitesimal source of
pairsD.8 Without account of fluctuations and interaction ef-

EFFECTS OF FLUCTUATIONS AND COULOMB… PHYSICAL REVIEW B 71, 184501s2005d

184501-3



fects, the anomalous Green’s functionF is given by the
expression19

Fsj,«nd = D/s«n
2 + j2d, s6d

wherej=p2/2m−m, and «n=2pTsn+1/2d is the fermionic
Matsubara frequency. The suppression of the transition tem-
peratureTc is determined by the correction to the function
Fsj ,«nd

DTc

Tc
=

T

D
E djo

«n

dFsj,«nd, s7d

where the functiondFsj ,«nd represents the leading-order
corrections to the anomalous Green’s functionFsj ,«nd due to
pair-density fluctuations and Coulomb interaction. The func-
tion dFsj ,«nd can be found by means of two different meth-
ods, which lead to identical results:sid solving the Usadel
equation with the help of perturbation theory in powers of
the fluctuating order parameter and potential and further av-
eraging over them using the Gaussian approximation8 or sii d
using the diagrammatic technique. For our purpose we
choose the diagrammatic approach. All diagramssbefore im-
purity averagingd, which contribute to the suppression of the
transition temperature in Eq.s7d, are shown in Fig. 1. One
can see that there exist two qualitatively different classes of
diagrams. First, Figs. 1sad–1scd describe corrections to the
transition temperature due to Coulomb repulsion and repre-
sent the so-called fermionic mechanism of the suppression of
superconductivity. The second typefFig. 1sddg describes a
correction to the transition temperature because of supercon-
ducting fluctuations and represents the bosonic mechanism.
It may seem surprising that we classify Fig. 1scd as belong-
ing to the fermionic mechanism, since this diagram contains
both Coulomb and Cooper pair propagators. The reason is
that, as we will show belowssee also Ref. 20d, there are
dramatic cancellations between contributions of diagrams of
the types in Figs. 1sad–1scd. It is this cancellation that is
responsible for the smallness of the contribution of the fer-
mionic mechanism at high temperatures,T.G. The dia-
grams of type in Fig. 1scd were not taken into account in
Ref. 21, where a different result for the suppression of the
transition temperature was obtained.22 In what follows we

consider both mechanisms of the suppression of supercon-
ductivity, in detail.

A. Suppression of superconductivity due to fluctuations
of the order parameter: Bosonic mechanism

In this section we consider the suppression of the super-
conducting transition temperature in granular metals due to
fluctuations of the order parametersbosonic mechanismd. We
will use the diagrammatic technique developed in Refs. 5
and 15. The main building block of the diagrams to be con-
sidered in this section is the Cooperon propagator defined by
the diagrams shown in Fig. 2sad. In the regime under consid-
eration all characteristic energies are much less than the
Thouless energyET=D /a2, whereD is the diffusion coeffi-
cient of a single grain. This allows us to use the zero-
dimensional approximation for a single-grain Cooperon
propagator C0

−1=tuVnu. The resulting expression for the
Cooperon is

FIG. 3. Diagrams describing correction to the transition tem-
perature due to superconducting fluctuationssbosonic mechanismd.
The diagrams were obtained after averaging Fig. 1sdd over the dis-
order. The solid lines denote the propagator of electrons, the dotted
lines denote the elastic interaction of electrons with impurities, and
the wavy lines denote the propagator of superconducting fluctua-
tions. The shaded rectangle and triangle denote the Cooperonfsee
Eq. s8dg and impurity vertex of granular metals, respectively. The
tunneling vertices are denoted as circles.

FIG. 1. Diagramssad–scd describe the correction to the super-
conducting transition temperature due to Coulomb repulsion, and
sdd describes correction to the transition temperature due to super-
conducting fluctuations. All diagrams are shown before averaging
over the impurities. The solid lines denote the electron propagators,
the dashed lines denote screened Coulomb interaction, and the
wavy lines denote the propagator of superconducting fluctuations.

FIG. 2. Diagramsad defines the Cooperon propagatorsshaded
rectangled fEq. s8dg in terms of the single-grain CooperonC0 and
sbd describes the renormalization of the BCS interaction vertex be-
cause of impurities. The superconducting propagatorfEq. s9dg is
represented by the thick wavy line and is defined byscd, where the
thin wavy line denotes the bare superconducting propagator. The
solid lines denote the propagator of electrons, and the tunneling
vertices are denoted as circles.
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CsVn,qd = t−1suVnu + «qdd−1, s8d

whereq is the quasimomentum andVn is the bosonic Mat-
subara frequency. The parameter«q on the right-hand side of
Eq. s8d appears to be due to the electron tunneling from grain
to grain, which was defined in Eq.s1dd.

The propagator of superconducting fluctuations,KsVnqd
is defined by the diagrams shown in Figs. 2sbd and 2scd.
They result in the following expression:

KsVn,qd = Fln
T

Tc
+ cS1

2
+

uVnu + «qd

4pT
D − cS1

2
DG−1

, s9d

with csxd being the di-g function.
The diagrams describing the correction to the transition

temperature in the lowest order with respect to the supercon-
ducting fluctuation propagatorKsVn,qd are shown in Fig. 3.
Deriving the analytical result for the diagrams in Fig. 3 it is
important to take into account the fact that the single-
electron propagator itself gets renormalized because of elec-
tron hopping. Tunneling processes give rise to an additional
term in the self-energy part of the single-electron propagator
ssee Fig. 4d

t−1 = t0
−1 + 2dgTd, s10d

wheret0 is the unrenormalized electron mean-free time. Al-
though the second term on the right-hand side of Eq.s10d is
much smaller than the first one, it is important to keep it
because the leading-order contribution int0

−1 to the correc-
tion to superconducting transition temperature cancels.

The contribution of each diagram in Fig. 3 to the suppres-
sion of superconducting critical temperature is presented in
Appendix A. Here we write the final expression for the con-
tribution of the diagrams in Figs. 3sad–3sfd to the supercon-
ducting transition temperature

SDTc

Tc
D

b
= − pT2do

q
F o

«ns«n−Vnd.0

KsVn,qds2u«nu + u2«n − Vnu + «qdd
«n

2su2«n − Vnu + «qdd2 − o
«ns«n−Vnd,0

KsVn,qd
«n

2suVnu + «qddG . s11d

Here the summation is going over the quasimomentumq and
the fermionic,«n=pTs2n+1d and bosonic,Vn=2pTn Mat-
subara frequencies.

The main contribution to the suppression of supercon-
ducting transition temperature in Eq.s11d comes from the
region of classical fluctuations and is given by the term with
Vn=0. Performing summation over the fermionic Matsubara
frequency«n in Eq. s11d we obtain the following result:

SDTc

Tc
D

b
= −

14zs3d
p3 o

q

1

«q
, s12d

wherezsxd is thez function. Equations12d for the suppres-
sion of superconducting transition temperature is valid out-
side the Ginzburg region, otherwise the lowest order ap-
proximation in the superconducting propagator that we used
to derive Eq.s12d is not justified. Performing summation
over the quasimomentumq in Eq. s12d we obtain the final
result for the suppression of superconductivity due to the
bosonic mechanismfEq. s1edg. The singularity in the two-
dimensional case should be cut at momentaqmin

2

=a−2sTc/gT
2dd in accordance with the expression for the

Ginzburg number

Gi ,5
1

gT
2d,

1

gT
2

Tc

gTd
3d.6 s13d

The divergence of the correction to the transition temperature
in 2d fEq. s12dg means that fluctuations destroy the super-
conducting long-range order, which is to be recovered by
introducing the artificial cutoffqmin. Then the critical tem-
perature that we calculate should be viewed as a crossover
temperature rather than the temperature of a true phase tran-
sition. However, since experimentally such a temperature
marks a sharp decay of the resistivity, the notion of the tran-
sition temperature still makes perfect sense.

It follows from Eq. s13d that for 3d-granular metals the
Ginzburg number is small in comparison to the right-hand
side of Eq. s12d, and the Gaussian approximation for the
bosonic mechanism is justified for temperaturesTc,gT

2d. In
the 2d case the results12d holds with the logarithmic accu-
racy in the same temperature intervalgT

2d@Tc.
The correction to the transition temperaturefEq. s12dg can

be interpreted as a contribution of the fluctuations of the
superconducting order parameter. These fluctuations can be
considered as a virtual creation of Cooper pairs, which are
bosons. That is why we call this mechanism of the suppres-

FIG. 4. Diagrams describing self-energy corrections to the
single-electron propagator due tosad elastic interaction of electrons
with impurities andsbd electron hopping. The solid lines denote the
bare propagator of electrons, and the dotted line denotes the elastic
interaction of electrons with impurities. The tunneling vertices are
denoted as circles.
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sion of the superconductivity bosonic. The correctionDTc
can be rather easily obtained via the Ginzburg-Landau ex-
pansion in the order parameterDsr d near the critical tempera-
ture. For the granular system the free-energy functionalFfDg
can be written as follows:

F = o
i
F t̃

d
uDiu2 +

b

2
uDiu4G + o

i,j
Jij uDi − D ju2, s14ad

where the coefficientst̃ andb are given by

t̃ =
T − Tc

Tc
, b =

7zs3d
8p2Tc

2d
, s14bd

with Ji,i±1=J0=pgT/16Tc being the Josephson coupling be-
tween the grains. Neglecting the quartic term in Eq.s14ad we
obtain the propagator ofkDqD−ql0 in the form

kDqD−ql0 =
Tcd

t̃ + spd/8Tcd«q
. s15d

The correction to the transition temperature can be found by
calculating the first order in theb contribution to the self-
energySs1d

Ss1d = 2bo
q

d

t̃ + spd/8Tcd«q
. s16d

This correction renormalizes the critical temperature. Taking
t̃=0 in Eq.s16d we come to the result expressed by Eq.s12d.

The fermionic mechanism of the suppression of the super-
conductivity is more complicated, and we consider it next.

B. Suppression of superconductivity due to Coulomb
repulsion: Fermionic mechanism

In this section we consider the suppression of the super-
conducting transition temperature in granular metals due to
combined effects of Coulomb interaction and disordersfer-
mionic mechanismd. The Coulomb interaction in granular
metals is screened by surrounding electrons as in any metal.
The diagrams that describe the screened effect are presented
in Fig. 5. Figure 5sad defines the diffusion propagator in
granular metals. As in the case with the CooperonfEq. s8dg,

we can consider the single-grain diffusion in the zero-
dimensional approximation such thatD0

−1=tuVnu and for the
diffusion propagator we obtain the expression

DsVn,qd = t−1suVnu + «qdd−1, s17d

which coincides with the Cooperon propagator in Eq.s8d.
Figure 5sbd describes the renormalization of the Coulomb
vertex due to impurities and Fig. 5scd defines the screened
Coulomb interaction

VsVn,qd = FCsqd
e2 +

2«q

uVnu + «qd
G−1

, s18d

whereCsqd is the Fourier transform of the capacitance ma-
trix, which has the following asymptotic form atq!a−1

C−1sqd =
2

adHp/q d= 2,

2p/q2 d = 3.
J s19d

The correction to the critical temperature due to Coulomb
interaction before averaging over impurities is given by Figs.
1sad–1scd. Averaging over the impurities leads to rather com-
plicated formulas. We will consider the contributions from
Figs. 1sad–1scd separately, presenting the total correction to
the critical temperature due to Coulomb interaction as

SDTc

Tc
D

f
= kX1l + kX2l, s20d

whereX1 represents the contribution of Figs. 1sad and 1sbd,
whereasX2 represents the contribution of Fig. 1scd and k…l
means averaging over the disorder. The two terms on the
right-hand side of Eq.s20d have a transparent physical mean-
ing: X1 describes the renormalization of the Cooperon due to
Coulomb repulsion, whereasX2 describes the vertex renor-
malization. After the disorder averagingkX1l and kX2l are
represented in Figs. 6 and 7, respectively. The evaluation of
these diagrams is presented in Appendix B. The final expres-
sion for the correction to the critical temperature due to the
fermionic mechanism has the following form:

SDTc

Tc
D

f
= − 4T o

q,Vn.0
VsVn,qdFFsVnd

«qd

sVn + «qdd2Vn

+
1

4pT

«qd

Vn
2 − s«qdd2c8S1

2
+

Vn

2pT
D

+ 2FsVndKsVn,qd
s«qdd2

fVn
2 − s«qdd2g2

3scf1/2 +sVn + «qdd/4pTg − cf1/2 +Vn/2pTgdG ,

s21ad

where we introduced the notation

FsVnd = cs1/2 +Vn/2pTd − cs1/2d, s21bd

and the propagatorKsVn,qd was defined in Eq.s9d. The
summation in Eq.s21ad is going over the quasimomentumq
and the bosonic Matsubara frequenciesVn. The propagator
of the screened electron-electron interactionVsVn,qd fEq.

FIG. 5. Diagramssad define the diffusion propagatorDsVn,qd
fEq. s17dg in terms of the single-grain diffusion propagatorD0sVnd,
sbd defines the renormalization of the Coulomb vertex due to impu-
rity scattering, andscd defines the dynamically screened Coulomb
interactionfEq. s18dg. The thin dashed lines represent the bare Cou-
lomb interaction, whereas the thick lines denote the screened Cou-
lomb interaction.
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s18dg in the limit when the charging energyEc is much larger
than the average mean-level spacingd can be written as

VsVn,qd =
2ECsqdsuVnu + «qdd

4«qECsqd + uVnu
, s21cd

whereECsqd=e2/2Csqd is the charging energy.
An important feature of Eq.s21ad is that the expression in

the large square brackets on the right-hand side vanishes at
q→0 for any frequencyVn. This is because the potential
VsVn,q=0d represents a pure gauge and thus should not con-
tribute to the thermodynamic quantities, such as the super-
conducting critical temperature. As a consequence one can
see that the contribution of the frequenciesVn that belong to
the interval

«qd , Vn , «qECsqd s22d

have a small contribution to the critical temperature correc-
tion given by Eq.s21ad.20 For this reason we do not expect
the Coulomb energyEC to appear in the final result. At
the same time the frequenciesVn that belong to the
interval s22d are fully responsible for the logarithmic renor-
malization of the intergranular conductancegTsTd=gT

−s1/2pddlnsgTEC/Td, where the Coulomb energy explicitly
appears in the result.

The expression on the right-hand side of Eq.s21ad is quite
complicated; we cannot derive a simple result at any arbi-
trary temperature. Further on we will consider only the lim-
iting casesT.G andT,G, where the calculations are con-
siderably simplified.

If the temperatureT is sufficiently small,T!G, then the
summation over the Matsubara frequencies can be replaced
with the integral. One can easily see that the singularities at
V=«qd in the second and third terms in Eq.s21ad cancel
each other. Their appearance, in fact, is a pure artifact of the
representation of the result in terms of thec functions. With
logarithmic accuracy one can leave only the first term in Eq.
s21ad; this results in

SDTc

Tc
D

f
= −

1

2p
o
q

1

«q
ln2 «qd

T
, «qd @ T. s23d

In the 3d case one can neglect theq dependence under the
logarithm in Eq.s23d, and the summation over quasimomen-
tum leads to the logarithmically accurate final results1cd. In
two dimensions, the main contribution in summation over
quasimomentum in Eq.s23d comes from the low momenta
q!1/a where the energy«q can be written as«q=gTq2a2

and the granular system becomes equivalent to a homo-
geneously disordered one. Summation overq with the loga-
rithmic accuracy leads to the final results1cd for 2D case. No
wonder that the result, Eq.s1cd in 2D agrees with the known
result for disorder metals.8–10,20Equations1cd in the 2D case
has a universal form and is expressed in terms of the tunnel-
ing conductancegT and the effective relaxation timesgTdd−1.
For the homogeneously disordered samples the latter time
should be replaced by the elastic scattering timet.

In the opposite limit,T@G, the quantity«qd can be ne-
glected with respect to the Matsubara frequenciesVn and the
result is drastically different from the one given by Eq.s1cd.
The potentialVsVn,qd in this limit takes the formVsVn,qd
= uVnu /2«q such that«q cancels in the main approximation.
Summation over Matsubara frequencies then leads to the cor-
rection Eq.s1bd.

One thus can see from the above that in the limitT@G,
the fermionic mechanism of the suppression of the supercon-
ductivity is no longer efficient. This can be seen rather easily
in another way using the phase approach of Ref. 6. Follow-
ing these works one decouples the Coulomb interactionfEq.
s5cdg by integration over a phasef

FIG. 6. Diagrams obtained from Figs. 1sad and 1sbd after disor-
der averaging. The solid lines denote the propagator of electrons,
the dashed lines denote screened Coulomb interaction, and the
dashed-dotted lines denote the elastic interaction of electrons with
impurities. The shaded rectangle and triangle denote the Cooperon
fsee Eq.s8dg and impurity vertex of granular metals, respectively.
The indicesi and j stand for the grain numbers. The tunneling
vertices are denoted as circles.

FIG. 7. Diagrams describing vertex renormalization obtained
from Fig. 1scd after averaging over the disorder. All notations are
the same as in Figs. 2 and 4.
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expS−
e2

2
E dto

i j

nistdCij
−1njstdD

=E expS− io
i
E nistdḟistddt

− o
i j
E dtḟistd

Cij

2e2ḟ jstdDDf, s24d

where nistd=ec*sr i ,tdcsr i ,tddr i is the electron number in
the ith grain andc are fermionic fields. With this decoupling
the variableḟ plays a role of an additional chemical poten-
tial. In the limit T@G sand only in this limitd the phasef can
be gauged out via the replacement

csr i,td → csr i,tdexpf− ifistdg. s25d

Substituting Eq.s25d into Eqs.s5ad–s5dd sor to be more pre-
cise, into the corresponding Lagrangian in the functional in-
tegral representationd we immediately see that the phasef
enters the tunneling term, Eq.s5dd only. However, this term
is not important in the limitT@G, and we conclude that the
long-range part of the Coulomb interaction leading to charg-
ing of the grains is completely removed. Therefore, the effect
of the Coulomb interaction on the superconducting transition
temperature must be small; this is seen from Eq.s1bd. This
conclusion matches well the fact that the upper limit in the
logarithms in Eq.s1cd is just G and at temperatures exceed-
ing this energy the logarithms should disappear. At low tem-
peratures,T,G, the phase description does not apply and the
nontrivial resultfEq. s1cdg appears. This result is of the pure
quantum origin and interference effects are very important.
In the limit of high temperatures,T.G, the interference ef-
fects are suppressed; that is why the fermionic mechanism of
the suppression of the superconductivity is no longer effi-
cient.

VI. DISCUSSION

We have demonstrated that the suppression of the super-
conducting transition temperature in granular metallic sys-
tems at large tunneling conductance between the grainsgT
@1 occurs due tosid fluctuations of the order parameter
sbosonic mechanismd andsii d Coulomb repulsionsfermionic
mechanismd. We have calculated the corresponding down-
ward shift of the transition temperature in both 3d granular
samples and films. We have found that at temperaturesT
.gTd, the suppression of superconductivity in granular met-
als is determined by the bosonic mechanism, whereas at low
temperatures,T,gTd, the suppression of superconductivity
is dominated by the fermionic mechanism.

The fermionic mechanism is of the quantum origin and
that is why it is a major mechanism for suppression at low
temperatures,T,G, where quantum interference effects are
pronounced. At elevated temperatures,T.G, the quantum
coherence vanishes, the fermionic mechanism becomes irrel-
evant, and the bosonic mechanism of the classical origin
comes into play.

The obtained theoretical results offer an easily accessible
experimental technique, enabling, in principle, inferring in-

formation about the morphology of the samples from theTc

data. Indeed, one can study the dependence of the supercon-
ducting transition temperatureTc of granular metals as a
function of the tunneling conductancegT by comparing sev-
eral granular samples with different tunneling conductances
sdifferent oxidation coatingd. The experimental curves forTc

suppression should have a different slope at highTc.gTd
and lowTc,gTd critical temperatures due to the fact that the
suppression of the superconductivity is given by the two dif-
ferent mechanisms. The information on the morphology of
the sample, i.e., whether the samples are homogeneously dis-
ordered or granular is then obtained from comparing the de-
pendences of the critical temperatures on the tunneling con-
ductance TcsgTd with the low- and high-Tc exemplary
samples.

Another interesting consequence of our results in Eqs.s1d
is the following: since at low critical temperatures,Tc,gTd,
the suppression of superconductivity in granular metals is
given by the fermionic mechanism and upon the substitution,
gTd→t−1, it coincides with the proper result for homoge-
neously disordered samples,8 one can generalize the renor-
malization group result by Finkelstein10 for the Tc suppres-
sion. The latter result obtained for homogeneously
disordered films can be applied to the case of the granular
superconductors upon the proper substitution for the diffu-
sion coefficientD=gTda2, where a is the size of a single
grain.

In conclusion we would like to make a connection be-
tween the results of the present paper and Ref. 21, where the
low-temperature metallic phase for some range of parameters
of granular system was predicted. In a view of the present
work the question concerning the appearance of the metallic
phase in 3D granular samples depends on the relation be-
tween the energy scaleG=gTd and the mean-field transition
temperatureTc.

Granular samples, characterized by the high single-grain
critical temperatureTc

s0d.G, can atT=0 exist only in either
of two phases, superconducting or insulating, and there is no
metallic phase, since the fermionic mechanism is strongly
suppressedfEq. s1bdg.

In granular samples with a low single-grain critical tem-
perature,Tc

s0d,G, the metallic phase can exist. In this case
the fermionic mechanism is the dominant mechanism for the
suppression of superconductivity. Using Eq.s1cd and ex-
trapolating results of the perturbation theory we may intro-
duce the characteristic conductance

gT
* < c ln2sG/Tc

s0dd, s26d

wherec=0.253/2p=0.0403 is the numerical coefficient, at
which the critical temperature is suppressed down to zero.
We would like to note that the nonperturbative approach,
which would require RG consideration, may change the
power of the logarithmsthis is what happens in the 2D
case10d. This may change the value ofgT

* significantly, but in
any case the characteristic conductancegT

* can be introduced.
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Samples withgT
* ,gT

C can be found only in either super-
conducting or insulating phases at temperaturesT=0, de-
pending on the intergranular tunneling conductance. Samples
with gT

* .gT
C, wheregT

C is the critical conductance defining
the metal to insulator transition,16

gT
C =

1

6p
lnsEC/dd s27d

can exhibit all three phases. They are superconductors ifgT
.gT

* , insulators ifgT,gT
C, or metals in the intermediate re-

gion gT
* .gT.gT

C. In this respect the intermediate metallic
region, in principle, can exist, but the definite answer can be
obtained only by the nonperturbative treatment that goes be-
yond the scope of the present paper.
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APPENDIX A: EVALUATION OF DIAGRAMS
FOR THE BOSONIC MECHANISM

In this appendix we evaluate diagrams for bosonic mecha-
nism presented in Fig. 3, beginning with consideration of
Figs. 3sad–3scd. These three diagrams can be conveniently
combined in a single diagram introducing the Hikami box,23

as is shown in Fig. 8. For zero-dimensional grainsall char-
acteristic energies are much less than the Thouless energyd,
Hikami box is given by the following expression:

Hs«n1
,«n2

,«n3
,«n4

d = 2pt2su«n1
u + u«n2

u + u«n3
u + u«n4

ud,

sA1d

where «ni
are fermionic Matsubara frequencies. Using Eq.

sA1d and evaluating Fig. 8sbd, we obtain the following result
for the sum of Figs. 3sad–3scd

− pT2d o
«ns«n−Vnd.0

3u«nu + uVn − «nu
«n

2su2«n − Vnu + «qdd2KsVn,qd, sA2d

whereKsVn,qd is the propagator of superconducting fluctua-
tions defined in Eq.s9d.

The sum of Figs. 3sdd and 3sed is given by

− pT2d o
«ns«n−Vnd.0

KsVn,qd
«n

2su2«n − Vnu + «qdd2«qd. sA3d

The above expression for Figs. 3sdd and 3sed, in fact, in-
cludes an additional contribution coming from Figs.
3sad–3scd, which was not included in Eq.sA2d. This addi-
tional contribution appears because the single-electron
Green’s function self-energy has a correction resulting from
the renormalization of the Green’s function self-energy due
to intergranular tunnelingfsee Eq.s10d and Fig. 4g. This
self-energy correction is negligible in the diffusive limitst
→0d, nevertheless, it gives a finite contribution to the sum of
Figs. 3sad–3scd because each of these diagrams diverge in the
diffusive limit as 1/t, while their sum remains finite due to
cancellation of the leading orders 1/t. The additional finite
term appears because Figs. 3sbd and 3scd have impurity lines
that are determined by the bare mean-free timet0, whereas
in all other places the mean-free time appears through the
Green’s function self-energy that contains the renormalized
t. This additional contribution could have been written as an
extra constant term 8pdgTd in the Hikami box. We, however,
find it is natural to “redirect” this term to Figs. 3sdd and 3sed,
since these diagrams are also proportional to the tunneling
conductancegT.

Finally, for Fig. 3sfd we obtain

pT2d o
«ns«n−Vnd,0

KsVn,qd
«n

2

1

uVnu + «qd
. sA4d

Adding all the contributions given by Eqs.sA2d–sA4d we
obtain the correction to the superconducting transition tem-
perature because of the bosonic mechanism presented in Eq.
s11d.

APPENDIX B: EVALUATION OF DIAGRAMS
FOR THE FERMIONIC MECHANISM

In this appendix we evaluate diagrams for fermionic
mechanism presented in Figs. 6 and 7. We begin our analysis
with the evaluation of the contributionkX1l on the right-hand
side of Eq.s20d that can be written as a sum of two terms

kX1l = kX1
al + kX1

bl, sB1ad

where kX1
al and kX1

bl represent the contributions of Figs.
6sad–6sfd and 6sgd–6skd, respectively. The sum of Figs.
6sad–6scd can be presented as a single diagram with the help
of the Hikami box shown in Fig. 9sad exactly as in the case
of the bosonic diagrams considered in Appendix A. The cor-
responding Hikami box shown in Fig. 9sad differs from the
“bosonic” Hikami box only by the arrow directions and is
given by the same Eq.sA1d. The sum of Figs. 6sad–6scd,
thus, results in the following expression:

FIG. 8. Diagramssad describe “bosonic” Hikami boxfEq. sA1dg.
sbd Using Hikami box the sum of Figs. 3sad–3scd can be conve-
niently represented as a single diagram. All notations are the same
as in Fig. 3.
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− 2pT2 o
«ns«n−Vnd,0

su«nu + uVnu/2d
«n

2suVnu + «qdd2VsVn,qd, sB1bd

where summation is going over the quasimomentumq, fer-
mionic «n, and bosonicVn Matsubara frequencies. The
propagator of the screened electron-electron interaction,
VsVn,qd in Eq. sB1bd was defined in Eq.s21cd.

The sum of the diagrams in Figs. 6sdd and 6sed results in
the following contribution:

− pT2 o
«ns«n−Vnd,0

VsVn,qd
«n

2suVnu + «qdd2«qd, sB1cd

whereas Fig. 6sfd is given by

pT2 o
«ns«n−Vnd.0

VsVn,qd
«n

2su2«n − Vnu + «qdd
. sB1dd

Summing up all contributions in Eqs.sB1bd–sB1dd we arrive
to the following expression, which represents the contribu-
tion of Figs. 6sad–6sfd

kX1
al = − pT2o

q
F o

«ns«n−Vnd,0
S 2VsVn,qd

u«nusuVnu + «qdd2

+
VsVn,qd

«n
2suVnu + «qddD − o

«ns«n−Vnd.0

VsVn,qd
«n

2su2«n − Vnu + «qddG .

sB1ed

Now we turn to the evaluation of Figs. 6sgd–6skd, which
are represented bykX1

bl in Eq. sB1ad. Calculation of the sum
of Figs. 6sgd–6sid again can be reduced to the evaluation of a
single diagram shown in Fig. 9sbd resulting in

− pT2 o
«ns«n−Vnd,0

uVnuVsVn,qd
suVnu + «qdd2u«nuu«n − Vnu

. sB1fd

Figure 6sjd is given by the following expression:

− pT2 o
«ns«n−Vnd,0

«qdVsVn,qd
suVnu + «qdd2u«nuu«n − Vnu

, sB1gd

while Fig. 6skd results in

− pT2 o
«ns«n−Vnd.0

VsVn,qd
su2«n − Vnu + «qddu«nuu«n − Vnu

.

sB1hd

Summing up the above contributionsfEqs.sB1fd–sB1hdg, we
obtain the expression representing the sum of Figs. 6sgd–6skd

kX1
bl = − pT2o

q
F o

«ns«n−Vnd,0

VsVn,qd
u«nuu«n − VnusuVnu + «qdd

+ o
«ns«n−Vnd.0

VsVn,qd
u«nuu«n − Vnusu2«n − Vnu + «qddG .

sB1id

Now we turn to the evaluation of the vertex renormaliza-
tion, which is given by the termkX2l on the right-hand side
of Eq. s20d. The corresponding diagrams are shown in Fig. 7.
Averaging over impurities results in the renormalization of
the effective interaction vertex between the Coulomb and
Cooper pair propagators. The renormalized vertexGsVnd is
given by the sum of two diagrams shown in Fig. 7sbd that
lead to the following expression:

GsVnd =
T

Vn + «qd
o

0,«n,Vn

1

«n

+ T o
«n.0

S 1

«n
−

1

«n + Vn
D 1

2«n + Vn + «qd
.

sB1jd

Using Eq.sB1jd the resulting expression for the termkX2l in
Eq. s20d can be written as

kX2l = 8p2T o
q,Vn.0

VsVn,qdKsVn,qdG2sVnd, sB2d

whereKsVn,qd is the propagator of superconducting fluctua-
tions defined in Eq.s9d. Expressing summations over the
fermionic frequencies in Eqs.sB1ed andsB1id in terms of the
di-g functions after some rearrangements of different terms
in Eqs.sB1ed andsB1id, we obtain Eq.s21ad for the suppres-
sion of superconducting transition temperature due to fermi-
onic mechanism.

FIG. 9. Diagramssad describe “fermionic” Hikami box.sbd Us-
ing Hikami box the sum of Figs. 6sgd–6sid can be conveniently
represented as a single diagram. All notations are the same as in
Fig. 6.
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