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We investigate the suppression of superconducting transition temperature in granular metallic systems due to
(i) fluctuations of the order paramet®osonic mechanispand(ii) Coulomb repulsiortfermionic mechanism
assuming large tunneling conductance between the ggaid. We find the correction to the superconducting
transition temperature ford3granular samples and films. We demonstrate that if the critical temperBture
>grd, whered is the mean level spacing in a single grain, the bosonic mechanism is the dominant mechanism
of the superconductivity suppression, while for critical temperatligesgrd the suppression of superconduc-
tivity is due to the fermionic mechanism.
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[. INTRODUCTION the bosonic mechanism. In particular, the bosonic mecha-
nism can lead to the appearance of the insulating state at zero
Being an experimentally accessible electronic system withemperature. The physics of this state can be most easily
the tunable parametetsS granular superconductors offer a understood in the case of a granular sample with weak inter-
unique testing ground for studying combined effects of dis-granular coupling: the Cooper pair can be localized on a
order, Coulomb interactions, and superconducting fluctuasingle grain if the charging energy is larger than the Joseph-
tions that govern the physics of disordered superconducto®on energy corresponding to the intergranular coupfing.
and are central to mesoscopic physics. One of the fundamehater it was showtf that a similar mechanism of Cooper-
tal questions long calling for investigation is the problem ofPair localization appears even in the case of the homo-
suppression of the superconducting critical temperafyia geneously disordered films, and the superconductor to insu-
granular superconductors and the role played in this Supprega_tor transition was predicted to occur at zero temperature.
sion by the Coulomb repulsion and superconducting fluctua- !N this paper we study the corrections to the supercon-

: : e ting transition temperature in granular metals perturba-
tions. In this paper we present a quantitative theory of th uc . . .
suppression o, in granular samples. ively. Although this approach is restricted and cannot be

The customary belief was that—according to the Ander-used for study of nonperturbative effects, such as the

son theorerh—disorder leaves critical temperature of a su_superconductor—to—insulator transition, it is useful in a sense
. ) P : that both relevant mechanisms of the critical temperature
perconductor intact. However this result holds only in the

field S din all th h suppression can be studied systematically within the same
mean-field BCS approximation, and in all the cases whergmeyork. The power of the perturbative calculation in the

the extension beyond the BCS approximation is requiredgy,qy of granular metals was demonstrated in that it revealed
one can expect a noticeable suppression of the critical temyn jmportant energy scalE=g;s, which was missed, for
perature. example, by the effective phase-functional formalism, where
The main mechanisms of the superconductivity suppresg; is the tunneling conductance between the grains &isd
sion are Coulomb repulsion and superconducting fluctuathe mean energy-level spacing for a single grain, appearing
tions. For example, disorder shifts significantly the superconin granular materials. The presence of this energy scale,
ducting transition temperature in thel 2hin fiilms®12The  which has a simple physical interpretation of an inverse av-
physical reason for the suppression of the critical temperaerage time that an electron spends in a single grain before
ture is that in thin films the interaction amplitude in the su-tunneling to one of the neighboring graifrings into play
perconducting channel decreases because of peculiBehaviors that are absent in homogeneous media. In particu-
disorder-induced interference effects that enhance the effetar, the twodifferent transport regimes at hig;>1", and
tive Coulomb interaction. On the technical side, in order tolow, T<T, temperatures appe&r.In the high-temperature
evaluate the effect of disorder, one should sum a certain clagsgime the correction to the conductivity due to the Coulomb
of diagrams that include, in particular, cooperons and diffuinteraction depends logarithmically on temperature in all di-
sons. In the subsequent discussion we will be referring to thismensions, whereas at low temperatures the interaction cor-
mechanism of the superconductivity suppression adahe rection to conductivity has the Altshuler-Aronov fotfrand,
mionic mechanism. thus, is very sensitive to the dimensionality of the sample.
The superconducting transition temperature can also be In a view of these findings one may expect that the cor-
reduced by the fluctuations of the order parameter, the effecection to the superconducting transition temperature can
being especially strong in low dimensions. The correspondalso be different depending on whether the temperture is
ing mechanism of the superconductivity suppression is callethrger or smaller than the energy scéle
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In the present paper we analyze the mechanisms of théimensionalityd=2 coincides with that obtained for homo-
suppression of superconductivity in both temperature regeneously disordered superconducting films upon the substi-
gimes. We find that the fermionic mechanism is temperaturéution I' — 772,
dependent and that its contribution is strongly reduced in the On the contrary, the correction to the transition tempera-
regionT>T". In this regime the bosonic mechanism of the ture due to the bosonic mechanism in Efjg) remains the
suppression becomes dominant. In the low-temperature resame in both regimes and is given by
gime, T<TI", the correction to the critical temperature is simi-

lar to that obtained for homogeneously disordered metals. In 14A§3(3) i d=3
this regime the fermionic mechanism plays the major role as &) __ T Ot (10
long as the intergranular tunneling conductance is large. T /y 7((3) I g$5 42

n _l = 1

The paper is organized as follows. In Sec. Il we summa-
rize the results for the suppression of superconducting tran-
sition temperature of granular metals. In Sec. IIl we comparavhere{(x) is the{ function and the dimensionless constant
our results for the suppression of superconductivity in granuwas defined below Eq.lc). Note that the energy scalé
lar metals to known results for homogeneously disorderedloes not appear in this bosonic part of the suppression of
systems. In Sec. IV we introduce the model; the effect ofsuperconducting temperature in Efje). This stems from the
fluctuations and Coulomb interaction on the superconductindact that the characteristic length scale for the bosonic
transition temperature is then discussed in Sec. V. The matimechanism is the coherence lengthwhich is much larger

279 T.

ematical details are relegated to the Appendixes. than the size of a single grain. The result for the two dimen-
sional case in Eq.le) is written with a logarithmic accuracy,
Il. SUMMARY OF THE RESULTS assuming that Ifg75/To)> 1.

_ _ o _ ~ The above expression for the correction to the transition
It is convenient to discriminate corrections due to bOSOﬂIQemperature due to the bosonic mechanism was obtained in
and fermionic mechanisms and write the result for the supthe lowest order in the propagator of superconducting fluc-
pressionAT, of the superconductor transition temperature intyations and holds, therefore, as long as the value for the

a form critical temperature shift given by E¢le) is larger than the
AT, (ATC> . (ATC> i Ginzburg region(AT)g
—— —\ = I ’ 2
Te Te /b Te /4 %L d=3
where the two terms on the right-hand side correspond to the (AT)g ~ gr9ré (2)
bosonic and fermionic mechanisms, respectively. The critical T. d=2
temperaturel, in Eq. (19 is the BCS critical temperature. 9r e

We find that at high temperature$>1", the fermionic ) ) N
correction to the superconducting transition temperature dodgomparing the correction to the transition temperatiife

not depend on the dimensionality of the sample given by Eq.(1e) with the width of the Ginzburg regiofEq.
(2)], one concludes that ford3granular metals the perturba-
AT, o ' :
(_c) =—¢,2, d=2,3, (1b) tive result(1e) holds if
Tele T T, < go. ®)

where ¢,;=7£(3)/2m%-(In 2)/4 is the numerical coefficient

andd is the dimensionality of the array of the grains. ture in Eq.(1e) is only logarithmically larger thafAT)g in

In the low-temperature regimeT<T', the fermionic Eq. (2). The two-dimensional resulLe) with the logarithmic

mechanism correction to the superconducting transition teméccuracy holds in the same temperature intef@alas for
perature depends on the dimensionality of the sample and Wree-dimensional samples

In two dimensions the correction to the transition tempera-

given by Note that inside the Ginzburg region the higher-order
A T fluctuation corrections become important. Moreover, the
AT 279 In T d=3 nonperturbative contributions that appear, in particular,
<_C) =— i ¢ (1o because of superconducting vortices should be taken into
Te /¢ 1 In3 I d=2 account as well. These effects destroy the superconducting
24y T ' long-range order and lead to Berezinskii-Kosterlitz-Thouless
. . . transition in 21 systems.
where A:97a3fd3q/(277)38q1“0'_253 is the dimensionless T, summarizg our results, we find that the correction to
constanta is the size of the grain, and the superconducting transition temperature of granular met-
_ als comes from two different mechanisnithe dominant
&g~ 29T§ (1-cosqa) (1d) mechanism depends on temperature ran@g In the low-

temperature regimel <I, the fermionic mechanism is the
with {a} being the lattice vectoréwe consider a periodic main mechanism of the suppressionTgfand the correction
cubic lattice of grains Note that in the low-temperature re- to the transition temperature is given by Egc); and (i) in
gime, T<T, the correction to the critical temperature in the the high-temperature regimd,>1I", the dominant mecha-
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nism is bosonic. At moderate temperatures; g3, the cor-  coefficient D=grda®> suggests that the universal low-
rection to the transition temperature is perturbative and isemperature description proposed in Ref. 18 can be general-
given by Eq.(1e), while at higher temperaturés> g%é, the ized to include the superconducting channel.
superconducting transition temperature must be determined

by considering the critical fluctuations in the effective

Ginzburg-Landau functional. IV. THE MODEL

Now we turn to the quantitative description of our model

SUPERCONDUCTIVITY IN GRANULAR AND d-dimensional array of superconducting grains in the metal-
HOMOGENEOUSLY DISORDERED SYSTEMS lic state. The motion of electrons inside the grains is diffu-

sive, and they can tunnel between grains. We assume that if
In this section we compare our results for the suppressiothe Coulomb interaction were absent, the sample would have
of superconductivity to the known results obtained for homo-been a good metal > T.
geneously disordered superconductors. We begin our discus- The Hamiltonian of the system of the coupled supercon-
sion with homogeneously disordered samples brieflyducting grains is
reminding what is known about suppression of superconduc- o
tivity in this case. H=Hy+H.+H,. (5a)
Both mechanisms of the suppression of superconductivit ~ . ) ) )
in homogeneously disordered films were discussed in severﬁlhe termH, in Eq. (5a) describes isolated disordered grains
publications3-1%24n particular, for films with thicknessi ~ With an electron-phonon interaction
such that <d< ¢, wherel is the electron mean-free path and ~ T _— N
¢ is the coherence length, it was shown that the result for ~ Ho= E €@k~ N 2 alial 1@ i + Himp, (5b)
the suppression of superconducting critical temperature can K Lkk’
be written in analogous form with Eq(la), AT./T. wherei labels the grainsk=(k, 1), ~k=(-k,|); A>0 is

=(ATe/To)s+(ATe/To)y,, wheré the interaction constang, (a;) are the creatiortannihila-
AT, , tion) pperators for an electron in the st&t®f theith grain;
<T_c)f: " 242 InT[1/(7To)], (43 and Hjy, represents the elastic interaction of the electrons
with impurities. The ternH, in Eq. (58 describes the Cou-
and lomb repulsion both inside and between the grains and is
given by
(%)b =- %(4:2 In[g/(7Ty)]. (4b) s P L
H.= E% nGCn;, (50

Hereg> 1 is the film conductanc@er one spin component
and 7 is the elastic electron mean-free time. One can segq, ..~

. . o i is the capacitance matrix armd is the operator of
i
from Eqgs.(4) that in the regime of large conductance within the electron number in thieh grain.

the logarithmic accuracy, the fermionic mechanism is the Equation(5¢) describes the long-range part of the Cou-

dominant one. At the same time, if the conductance is not to?omb interaction, which is simply the charging energy of the
large both corrections become of the order of one and th rains. The last term on the right-hand side of B is the
bosonic mechanism becomes very important as well. In thi unneling Hamiltonian

regime the suppression of superconductivity should be con-
sidered _nonpertL_erativeIIy as in Ref. _14_ for the posonic |:|t: S ti,-af 3 g, (5d)
mechanism and in Ref. 10 for the fermionic mechanism. ipa T

In granular superconductors the situation is different be- ) ) ) ]
cause of appearance of the energy s&ate . As one can where.tij is the tunneh.ng matrix ele_ment corresponding to
see from Egs(1) both mechanisms of the suppression ofthe points of contact aith andjth grains and, q stand for
superconductivity are important. In the limit of high tem- the states in the grains. _
peraturesT>T, the interference effects in granular metals !N the following section we will study effects of fluctua-
are suppressed and that is why the fermionic mechanism fions on the superconducting tranS|_t|on temperature of granu-
strongly reduce@Eq. (1b)]. The shift of the superconducting & metals based on the model defined by Egs.
critical temperature in this region is defined by the bosonic
r.ne.chanism and has a classic origin. In the Iow-te_mperature V. EEFECTS OF ELUCTUATIONS AND COULOMB
limit, T<I', quantum mFerference effects bec_ome |mportant INTERACTION ON TRANSITION TEMPERATURE
therefore, the suppression of superconductivity is defined by
the fermionic mechanism. The fact that in the low- The superconducting transition temperature can be found
temperature regime the correction to the superconductingy considering corrections to the anomalous Green’s func-
transition temperature for granular samples can be obtainetibn F due to fluctuations of the order parameter and Cou-
from the corresponding result for the homogeneously disortomb interaction in the presence of infinitesimal source of
dered samples via the substitution of the effective diffusiorpairs A.2 Without account of fluctuations and interaction ef-
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FIG. 1. Diagrams(@—(c) describe the correction to the super-  FIG. 2. Diagram(a) defines the Cooperon propagatshaded
conducting transition temperature due to Coulomb repulsion, anééctanglé [Eq. (8)] in terms of the single-grain Cooperd and
(d) describes correction to the transition temperature due to Supegb) describes the renormalization of the BCS interaction vertex be-
conducting fluctuations. All diagrams are shown before averagingause of impurities. The superconducting propagéiar. (9)] is
over the impurities. The solid lines denote the electron propagator§€presented by the thick wavy line and is defined ¢y where the
the dashed lines denote screened Coulomb interaction, and tiBIn wavy line denotes the bare superconducting propagator. The

wavy lines denote the propagator of superconducting fluctuations Selid lines denote the propagator of electrons, and the tunneling
vertices are denoted as circles.

D)

i)

v

(¢

fects, the anomalous Green’s functiéhis given by the ) ] )
expressiot? consider both mechanisms of the suppression of supercon-

ductivity, in detail.
F(éen) = M(sr+ &), (6)

where £€=p?/2m-u, ande,=27T(n+1/2) is the fermionic
Matsubara frequency. The suppression of the transition tem-
peratureT, is determined by the correction to the function

A. Suppression of superconductivity due to fluctuations
of the order parameter: Bosonic mechanism

F(&,en) In this section we consider the suppression of the super-
conducting transition temperature in granular metals due to

AT, - T f de>, SF (& e,), (7)  fluctuations of the order paramet@osonic mechanismWe
T. A o will use the diagrammatic technique developed in Refs. 5

and 15. The main building block of the diagrams to be con-

where .the functiondF (¢, £r) represc?nts the leading-order gjjereq in this section is the Cooperon propagator defined by
corrections to the anomalous Green's functidd, e,) due to the diagrams shown in Fig(&. In the regime under consid-

pair-density fluctuations and Coulomb interaction. The funcration all characteristic energies are much less than the
tion 6F(¢,&,) can be found by means of two different meth- 1,4jess energ,;=D/a?, whereD is the diffusion coeffi-
ods, which lead to identical resulté) solving the Usadel cijent of a single grain. This allows us to use the zero-
the fluctuating order parameter and potential and further aVpropagator C;'=7€),|. The resulting expression for the
eraging over them using the Gaussian approxim&tiorii ) Cooperon is

using the diagrammatic technique. For our purpose we
choose the diagrammatic approach. All diagrdbrefore im-
purity averaging, which contribute to the suppression of the
transition temperature in Ed7), are shown in Fig. 1. One
can see that there exist two qualitatively different classes of
diagrams. First, Figs.(&#-1(c) describe corrections to the

transition temperature due to Coulomb repulsion and repre: (@) (b) (e}
sent the so-called fermionic mechanism of the suppression o
superconductivity. The second typEig. 1(d)] describes a (\/\7

correction to the transition temperature because of supercor
ducting fluctuations and represents the bosonic mechanisrr
It may seem surprising that we classify Figcllas belong-

ing to the fermionic mechanism, since this diagram contains @ © ®

both Coulomb and Cooper pair propagators. The reason is FIG. 3. Diagrams describing correction to the transition tem-

that, as we will show belowsee also Ref. 20 there are  ,oratyre due to superconducting fluctuatiébssonic mechanism
dramatic cancellations between contributions of diagrams Ofpe giagrams were obtained after averaging Fig) dver the dis-

the types in Figs. ()-1(c). It is this cancellation that is order. The solid lines denote the propagator of electrons, the dotted
responsible for the smallness of the contribution of the ferjines denote the elastic interaction of electrons with impurities, and
mionic mechanism at high temperaturds>I". The dia- the wavy lines denote the propagator of superconducting fluctua-
grams of type in Fig. (c) were not taken into account in tions. The shaded rectangle and triangle denote the Coopseen
Ref. 21, where a different result for the suppression of theeq. (8)] and impurity vertex of granular metals, respectively. The
transition temperature was obtair®din what follows we  tunneling vertices are denoted as circles.

®
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C(Qnq) = 7| + 8407, ®
whereq is the quasimomentum arfd, is the bosonic Mat- S, 7R
subara frequency. The paramestgron the right-hand side of (a) (b)
Eq. (8) appears to be due to the electron tunneling from grain _ o )
to grain, which was defined in EqLd). FIG. 4. Diagrams describing self-energy corrections to the

The propagator of superconducting fluctuatiokéQ,q) single-electron propagator due (@ elastic interaction of electrons

: - - : : with impurities andb) electron hopping. The solid lines denote the
Is defined b.y the dlagrgms shown_ ln.Flgib)Zand 20). bare propagator of electrons, and the dotted line denotes the elastic
They result in the following expression:

interaction of electrons with impurities. The tunneling vertices are
) denoted as circles.
n@= | N T g 2/

7=t + 2dgrs, (10)

with #(x) being the diy function. where 7 is the unrenormalized electron mean-free time. Al-
The diagrams describing the correction to the transitiorthough the second term on the right-hand side of () is
temperature in the lowest order with respect to the supercormuch smaller than the first one, it is important to keep it
ducting fluctuation propagatdt({},,q) are shown in Fig. 3. because the leading-order contributionsjt to the correc-
Deriving the analytical result for the diagrams in Fig. 3 it is tion to superconducting transition temperature cancels.
important to take into account the fact that the single- The contribution of each diagram in Fig. 3 to the suppres-
electron propagator itself gets renormalized because of elesion of superconducting critical temperature is presented in
tron hopping. Tunneling processes give rise to an additionahppendix A. Here we write the final expression for the con-
term in the self-energy part of the single-electron propagatotribution of the diagrams in Figs.(8—3(f) to the supercon-

(see Fig. 4 ducting transition temperature
|
AT K(Q,,q)(2]en| + |28 = Q| + €46 K(Q,,
(_c> =—’7TT252 |: E (Q, q;( |8n| | €n n|2 Eq )_ 2 . (2n,9) . (11)
Te /b 4 L en(en-0y>0 en(|2e0 = Q| + £40) en(en-0)<0 Enl[Qn] + £¢9)
[
Here the summation is going over the quasimomerdLend 1
the fermionic,e,=#T(2n+1) and bosonic{),=27Tn Mat- g_ 2d,
subara frequencies. Gi~9§ " (13
The main contribution to the suppression of supercon- 1 Te 3d.
ducting transition temperature in E¢L1) comes from the g% gro

region of classical fluctuations and is given by the term with . : .
0, =0. Performing summation over the fermionic MatsubaraThe divergence of the correction to the transition temperature

. . . ) in 2d [Eqg. (12)] means that fluctuations destroy the super-
frequencyey, in Eq. (11) we obtain the following result: conducting long-range order, which is to be recovered by

introducing the artificial cutofig,;,. Then the critical tem-

AT 14/3) < 1 perature that we calculate should be viewed as a crossover
(—C) =- 3 E =, (12) temperature rather than the temperature of a true phase tran-
Tc /b ™ q €q sition. However, since experimentally such a temperature

marks a sharp decay of the resistivity, the notion of the tran-
sition temperature still makes perfect sense.
where {(x) is the { function. Equation(12) for the suppres- It follows from Eq. (13) that for 3d-granular metals the
sion of superconducting transition temperature is valid outGinzburg number is small in comparison to the right-hand
side the Ginzburg region, otherwise the lowest order apside of Eq.(12), and the Gaussian approximation for the
proximation in the superconducting propagator that we useddosonic mechanism is justified for temperatufgs: g%&. In
to derive EQ.(12) is not justified. Performing summation the 2 case the resultl2) holds with the logarithmic accu-
over the quasimomentum in Eq. (12) we obtain the final racy in the same temperature intergds> T..
result for the suppression of superconductivity due to the The correction to the transition temperat{igg. (12)] can
bosonic mechanisrfEq. (1e)]. The singularity in the two- be interpreted as a contribution of the fluctuations of the
dimensional case should be cut at momentd;, superconducting order parameter. These fluctuations can be
=a4T./g3d) in accordance with the expression for the considered as a virtual creation of Cooper pairs, which are
Ginzburg number bosons. That is why we call this mechanism of the suppres-
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FIG. 5. Diagramda) define the diffusion propagat®((),,q)
[Eq. (17)] in terms of the single-grain diffusion propagaf@g((),),

(b) defines the renormalization of the Coulomb vertex due to impu-

rity scattering, andc) defines the dynamically screened Coulomb
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we can consider the single-grain diffusion in the zero-
dimensional approximation such thag*=17(,| and for the
diffusion propagator we obtain the expression

D(Qn,@) =7 H(Q0] + 8497,

which coincides with the Cooperon propagator in E8).
Figure 5b) describes the renormalization of the Coulomb
vertex due to impurities and Fig/(& defines the screened
Coulomb interaction

17

C(q) N 284 _1,
e Q)+ £q0

V(Q,,q) = { (18)

interaction[Eq. (18)]. The thin dashed lines represent the bare Cou-where C(q) is the Fourier transform of the capacitance ma-
lomb interaction, whereas the thick lines denote the screened Cotrix, which has the following asymptotic form at<a™*

lomb interaction.

sion of the superconductivity bosonic. The correctidi,

2

ad

7lq d=2,

1
2mlo? d=3. (19

CHq)=

|

can be rather easily obtained via the Ginzburg-Landau ex- The correction to the critical temperature due to Coulomb

pansion in the order paramet&¢r) near the critical tempera-
ture. For the granular system the free-energy functiéhall
can be written as follows:

T b
F= E {SAJZ + §|Ai|4:| + E JlAi-A%  (14a
i )
where the coefficients andb are given by
~_T-T. 74(3)
= , = , 14b
T, 872126 (14b)

with J; i1, =Jo=7gr/ 16T, being the Josephson coupling be-
tween the grains. Neglecting the quartic term in Bdla we
obtain the propagator di\;A_g), in the form

T.0

AA_ o=
(Bai-glo T+ (wol8T ey

(15

interaction before averaging over impurities is given by Figs.
1(a)-1(c). Averaging over the impurities leads to rather com-
plicated formulas. We will consider the contributions from
Figs. 1a-1(c) separately, presenting the total correction to
the critical temperature due to Coulomb interaction as

(ATC

Te
whereX; represents the contribution of Figsaland Xb),
whereasX, represents the contribution of Fig(cl and(...)
means averaging over the disorder. The two terms on the
right-hand side of Eq.20) have a transparent physical mean-
ing: X; describes the renormalization of the Cooperon due to
Coulomb repulsion, whereas, describes the vertex renor-
malization. After the disorder averaginX;) and (X,) are
represented in Figs. 6 and 7, respectively. The evaluation of
these diagrams is presented in Appendix B. The final expres-

)f =(Xp) +(Xp), (20

The correction to the transition temperature can be found bgion for the correction to the critical temperature due to the

calculating the first order in thb contribution to the self-
energy>®

SO =2p> -

q T+ (mol8T e, '

(16)

This correction renormalizes the critical temperature. Taking

7=0in Eq.(16) we come to the result expressed by Ep).

The fermionic mechanism of the suppression of the super-

conductivity is more complicated, and we consider it next.

B. Suppression of superconductivity due to Coulomb
repulsion: Fermionic mechanism

fermionic mechanism has the following form:

ATC) £q0
—C) =-4T > V(Q, ){F(Q ) ————
( Te /s q,0,>0 md ) (Qn+8q5)zﬂn
1 £q0 (10,
t <02 2\ St o 5
4T Q2 - (g40) \2 24T
(849)°

* R(OKOn D7~ 7p

X (P12 +(Qn+ £q0)[47T] - y{1/2 +Qn/27rT])} ,

(21a

In this section we consider the suppression of the super- _ _
conducting transition temperature in granular metals due tg/here we introduced the notation

combined effects of Coulomb interaction and disorfer-
mionic mechanistn The Coulomb interaction in granular

F(Q,) = Y112 +Q /2aT) - y(1/2), (21b)

metals is screened by surrounding electrons as in any metand the propagatoK({),,q) was defined in Eq(9). The
The diagrams that describe the screened effect are presentsginmation in Eq(2149 is going over the quasimomentumn

in Fig. 5. Figure %a) defines the diffusion propagator in
granular metals. As in the case with the Coopdi6g. (8)],

and the bosonic Matsubara frequenci®és The propagator
of the screened electron-electron interacti(f},,,q) [Eq.

184501-6
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A’—\\ A,‘\\/\ /(l-\7\ 8q5< 0, < 8qEC(Q) (22
i have a small contribution to the critical temperature correc-
@ ®) © tion given by Eq.(218.%° For this reason we do not expect
RS AN _ RS the Coulomb energye- to appear in the final result. At
SN | gL ing ! L the same time the frequencieQ, that belong to the

interval (22) are fully responsible for the logarithmic renor-
. _ . . malization of the intergranular conductanag(T)=gr
! ' ! ! —(1/2md)In(grEc/T), where the Coulomb energy explicitly
appears in the result.
The expression on the right-hand side of E21.3g is quite
Y ) Y. Y complicated; we cannot derive a simple result at any arbi-
: trary temperature. Further on we will consider only the lim-
(@) (h) 0 iting casesT >I" and T<T’, where the calculations are con-
: siderably simplified.
Y pad If the temperaturd is sufficiently small, T<T", then the
1 -1 summation over the Matsubara frequencies can be replaced
0O i ) with the integral. One can easily see that the singularities at
Q=gy6 in the second and third terms in E(R18 cancel
FIG. 6. Diagrams obtained from Figs(al and 4b) after disor-  each other. Their appearance, in fact, is a pure artifact of the
der averaging. The solid lines denote the propagator of electrongepresentation of the result in terms of tiidunctions. With
the dashed lines denote screened Coulomb interaction, and thegarithmic accuracy one can leave only the first term in Eq.
dashed-dotted lines denote the elastic interaction of electrons witfR1g); this results in
impurities. The shaded rectangle and triangle denote the Cooperon
[see EQ.(8)] and impurity vertex of granular metals, respectively.
The indicesi and j stand for the grain numbers. The tunneling (ATC)
f

vertices are denoted as circles. - iz 1 In? S—C‘is, g 0>T. (23
T q

Z'n'q &q

(18] in the limit when the charging enerd. is much larger
than the average mean-level spacihgan be written as

2B + 00
V@)= @ 10,

In the 3 case one can neglect tlgedependence under the
logarithm in Eq.(23), and the summation over quasimomen-
tum leads to the logarithmically accurate final regf). In
two dimensions, the main contribution in summation over
whereEc(q)=€?/2C(q) is the charging energy. quasimomentum in Eq23) comes from the low momenta
An important feature of E¢21a is that the expressionin g<1/a where the energy, can be written as,=grg%a?
the large square brackets on the right-hand side vanishes atd the granular system becomes equivalent to a homo-
g—0 for any frequency(),. This is because the potential geneously disordered one. Summation oyavith the loga-
V(Q,,q=0) represents a pure gauge and thus should not cornithmic accuracy leads to the final res(lt) for 2D case. No
tribute to the thermodynamic quantities, such as the supewonder that the result, E4lc) in 2D agrees with the known
conducting critical temperature. As a consequence one camsult for disorder metafs:1%2°Equation(1c) in the 2D case
see that the contribution of the frequenciesthat belong to  has a universal form and is expressed in terms of the tunnel-
the interval ing conductancer and the effective relaxation timegro) ™.
For the homogeneously disordered samples the latter time
-~ should be replaced by the elastic scattering time
’ \ In the opposite limit,T>T", the quantitys,é can be ne-
d \ glected with respect to the Matsubara frequen€lggand the
@ M result is drastically different from the one given by Efic).
The potentialV({},,,q) in this limit takes the form\v({},,q)
=|Qy|/2¢4 such thate, cancels in the main approximation.
Summation over Matsubara frequencies then leads to the cor-

> rection Eq.(1b).
= NN 4 AN One thus can see from the above that in the limitT,

the fermionic mechanism of the suppression of the supercon-

ductivity is no longer efficient. This can be seen rather easily
FIG. 7. Diagrams describing vertex renormalization obtainedin another way using the phase approach of Ref. 6. Follow-

from Fig. 1(c) after averaging over the disorder. All notations are ing these works one decouples the Coulomb interagtn

the same as in Figs. 2 and 4. (50)] by integration over a phas¢

(210
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e N formation about the morphology of the samples from The
expl - f dr2n (nCiny(7) data. Indeed, one can study the dependence of the supercon-

ducting transition temperatur€. of granular metals as a
) : function of the tunneling conductangg by comparing sev-
:fexp<—|2 f (1) i(n)d7 eral granular samples with different tunneling conductances
(different oxidation coating The experimental curves far,
suppression should have a different slope at high g6
and lowT.< g¢4 critical temperatures due to the fact that the
suppression of the superconductivity is given by the two dif-
wheren;(7)=[¢ (r;, ))¢dr;, 7)dr; is the electron number in  ferent mechanisms. The information on the morphology of
theith grain andv,b are fermionic fields. With this decoupling the sample, i.e., whether the samples are homogeneously dis-
the variableg plays a role of an additional chemical poten- ordered or granular is then obtained from comparing the de-
tial. In the limit T>1I" (and only in this limi} the phasep can  pendences of the critical temperatures on the tunneling con-
be gauged out via the replacement ductance T(gy) with the low- and highFf, exemplary
. i samples.
wrim) = gl Dex-1(7)]. (25 Another interesting consequence of our results in Ebs.
Substituting Eq(25) into Egs.(5a8—(5d) (or to be more pre- is the following: since at low critical temperaturds,< g4,
cise, into the corresponding Lagrangian in the functional inthe suppression of superconductivity in granular metals is
tegral representatiorwve immediately see that the phage given by the fermionic mechanism and upon the substitution,
enters the tunneling term, E¢pd) only. However, this term  g6— 7%, it coincides with the proper result for homoge-
is not important in the limiff>T", and we conclude that the neously disordered samplg@sne can generalize the renor-
long-range part of the Coulomb interaction leading to chargmalization group result by Finkelstéfhfor the T suppres-
ing of the grains is completely removed. Therefore, the effection. The latter result obtained for homogeneously
of the Coulomb interaction on the superconducting transitiordisordered films can be applied to the case of the granular
temperature must be small; this is seen from @dp). This  superconductors upon the proper substitution for the diffu-
conclusion matches well the fact that the upper limit in thesion coefficientD=gréa?, wherea is the size of a single
logarithms in Eq(10) is justI’ and at temperatures exceed- grain.
ing this energy the logarithms should disappear. At low tem- In conclusion we would like to make a connection be-
peraturesT <I', the phase description does not apply and thaween the results of the present paper and Ref. 21, where the
nontrivial resul{Eq. (10)] appears. This result is of the pure low-temperature metallic phase for some range of parameters
guantum origin and interference effects are very importantof granular system was predicted. In a view of the present
In the limit of high temperatures;>T', the interference ef- work the question concerning the appearance of the metallic
fects are suppressed,; that is why the fermionic mechanism gthase in 3D granular samples depends on the relation be-
the suppression of the superconductivity is no longer effitween the energy scalé=g;é and the mean-field transition
cient. temperatureT.
Granular samples, characterized by the high single-grain
VI. DISCUSSION critical temperaturél’O >T", can atT=0 exist only in either
of two phases, superconductlng or insulating, and there is no
metallic phase, since the fermionic mechanism is strongly
suppressefiEq. (1b)].

In granular samples with a low single-grain critical tem-
perature,Tg°)<F, the metallic phase can exist. In this case
the fermionic mechanism is the dominant mechanism for the
suppression of superconductivity. Using Edc) and ex-
trapolating results of the perturbation theory we may intro-
duce the characteristic conductance

i C. -
—2 dmsi(f)é(ﬁ,-(r))w, (24)

We have demonstrated that the suppression of the super-
conducting transition temperature in granular metallic sys-
tems at large tunneling conductance between the gins
>1 occurs due tdi) fluctuations of the order parameter
(bosonic mechanisjrand (i) Coulomb repulsior{fermionic
mechanismm We have calculated the corresponding down-
ward shift of the transition temperature in bott Granular
samples and films. We have found that at temperatilires
> gr6, the suppression of superconductivity in granular met-
als is determined by the bosonic mechanism, whereas at low
temperaturesT <gr4, the suppression of superconductivity . 5 ©
is dominated by the fermionic mechanism. gr =~ cIn(I'/T¢”), (26)

The fermionic mechanism is of the quantum origin and
that is why it is a major mechanism for suppression at low
temperatures] <T", where quantum interference effects arewherec=0.253/27=0.0403 is the numerical coefficient, at
pronounced. At elevated temperaturds; I', the quantum which the critical temperature is suppressed down to zero.
coherence vanishes, the fermionic mechanism becomes irrdlVe would like to note that the nonperturbative approach,
evant, and the bosonic mechanism of the classical originvhich would require RG consideration, may change the
comes into play. power of the logarithm(this is what happens in the 2D

The obtained theoretical results offer an easily accessibleasé®). This may change the value g% significantly, but in
experimental technique, enabling, in principle, inferring in-any case the characteristic conductagpean be introduced.
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N2 = 3| + [0y~ &)
w ws 1 [ o Vil Lo e a8 Y ST K(Q,,0), (A2)
RN 3= * * Sn(sn—ﬂn)>08n(|28n_9n|+8q5)

waq

(@) whereK(),,q) is the propagator of superconducting fluctua-
tions defined in Eq(9).
The sum of Figs. @) and 3e) is given by

K(€,,9)

- aT25 2 65, (A3)
en(en0) >0 E0l[280 = Q| + £48)7
: The above expression for Figsid3 and 3e), in fact, in-

cludes an additional contribution coming from Figs.
= 3(a)—-3(c), which was not included in EqA2). This addi-
tional contribution appears because the single-electron
FIG. 8. Diagramsa) describe “bosonic” Hikami bokEq.(A1)].  Green’s function self-energy has a correction resulting from
(b) Using Hikami box the sum of Figs.(8-3(c) can be conve-  the renormalization of the Green’s function self-energy due
nieptly _represented as a single diagram. All notations are the samg intergranular tunnelingsee Eq.(10) and Fig. 4. This
as in Fig. 3. self-energy correction is negligible in the diffusive linit
. —0), nevertheless, it gives a finite contribution to the sum of
Samples withg;<g$ can be found only in either super- Figs. 3a)—3(c) because each of these diagrams diverge in the
conducting or insulating phases at temperatufes), de- diffusive limit as 1/, while their sum remains finite due to
pending on the intergranular tunneling conductance. Samplesancellation of the leading orders 4 /The additional finite
with g7>g%, whereg is the critical conductance defining term appears because Figéb)/3and 3c) have impurity lines

the metal to insulator transitiofs, that are determined by the bare mean-free titpewhereas
1 in all other places the mean-free time appears through the
of = on In(E¢/d) (27)  Green’s function self-energy that contains the renormalized
a

7. This additional contribution could have been written as an

can exhibit all three phases. They are superconductags if €Xtra constant termaigr5in the Hikami box. We, however,
>gfr, insulators ifgy < g?, or metals in the intermediate re- fmd it is natura_tl to “redirect” this term to_Flgs(d&) and 3e), .
gion g;>gr>aS. In this respect the intermediate metallic SIN® these diagrams are also proportional to the tunneling
region, in principle, can exist, but the definite answer can b&onductancer. _

obtained only by the nonperturbative treatment that goes be- Finally, for Fig. 3f) we obtain

yond the scope of the present paper. K(Q,,q) 1

7T26 X, :
ACKNOWLEDGMENTS eentig<0 € Qo + 808

(A4)
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FOR THE FERMIONIC MECHANISM

APPENDIX A: EVALUATION OF DIAGRAMS _ ) ) o
FOR THE BOSONIC MECHANISM In this appendix we evaluate diagrams for fermionic

. _ . _ mechanism presented in Figs. 6 and 7. We begin our analysis
In this appendix we evaluate diagrams for bosonic mechawjith the evaluation of the contributiofX,) on the right-hand

nism presented in Fig. 3, beginning with consideration ofgjge of Eq.(20) that can be written as a sum of two terms
Figs. 3a)-3(c). These three diagrams can be conveniently

combined in a single diagram introducing the Hikami B&x, (Xq) = (X3 + (XD, (Bla)
as is shown in Fig. 8. For zero-dimensional gréafl char-

a b . . .
acteristic energies are much less than the Thouless energ here (X;) and (X;) represent the contributions of Figs.

Hikami box is given by the following expression: (a)-6(f) and @g)-6(k), respectively. The sum of Figs.
g y gexp 6(a)—6(c) can be presented as a single diagram with the help
H(en,€ny 8nyen) = 27|60 | + [en | + len | + [en,)), of the Hikami box shown in Fig. @) exactly as in the case

(A1) of the bosonic diagrams considered in Appendix A. The cor-
responding Hikami box shown in Fig(® differs from the
where &y, are fermionic Matsubara frequencies. Using Eq.“bosonic” Hikami box only by the arrow directions and is
(A1) and evaluating Fig.®), we obtain the following result given by the same EqA1). The sum of Figs. @&-6(c),
for the sum of Figs. @)—-3(c) thus, results in the following expression:
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N2
(a) wg" H )Eua =
N

(b) ﬁ\\
= H [l

FIG. 9. Diagramga) describe “fermionic” Hikami box(b) Us-
ing Hikami box the sum of Figs.(6)-6(i) can be conveniently

represented as a single diagram. All notations are the same as in

Fig. 6.

+|Qp|/2
—onT2 E (l8n| | n| )

V(Q ’q)y
enlentn<0 o[ Q| +£q0)7 "

(B1b)

where summation is going over the quasimomentynfer-

mionic &,, and bosonic(),, Matsubara frequencies. The

PHYSICAL REVIEW B 71, 184501(2005

|Q2V(Q,9)
-aT2 > . (B1f)
en(en—Qp) <0 (|10 + 8q5)2|8n||8n - Q)
Figure Gj) is given by the following expression:
oV(Q,,q)
LAY e . (Blg
en(en—Qp)<0 (19| + 8q5)2|8n||8n -Q
while Fig. 6Kk) results in
S V(€©Qn,q)
en(en—Qp)>0 (1280 - Qqf + 8q5)|8n||8n - Q)
(B1h)

Summing up the above contributiofigs.(B1f)«(B1h)], we
obtain the expression representing the sum of Figp—6(k)

V(Q,,q)
Xp=-aT2| X
! q Len(en-Qp<0 |8n||8n - Qn|( Qn| + 8q5)

.y V(©,9) |
en(en—Qp)>0 lenllen = Qnl (|26 = Q| + 3q5)
(B1i)

Now we turn to the evaluation of the vertex renormaliza-

propagator of the screened electron-electron interactionjon, which is given by the terniX,) on the right-hand side

V(Q,,q) in Eq. (B1b) was defined in Eq(210).
The sum of the diagrams in Figs(d and Ge) results in
the following contribution:

V(Q
-T2 > 2(—”’q)28q5, (B1c)
en(en-0)<0 Enl([ Q| +80)
whereas Fig. @) is given by

S V(Q4,0)
en(en—Qn)>0 8§(|28n - Q[+ 8q5)

(B1d)

Summing up all contributions in EqéB1b)—(B1d) we arrive

to the following expression, which represents the contribu-

tion of Figs. &a)—6(f)

2V(Q,,q)
X=-aT2 | X <—
' q Len(en—Qp<0 |8n|(|Qn| + 8q‘()\)z
V(©,0) ) i V(©,,9)
8ﬁ(|Qn| +890)/ o (e,-0)>0 8ﬁ(|28n -Q+ £q0)

(Ble)

Now we turn to the evaluation of Figs(d—6(k), which
are represented b@(‘f) in Eq. (B1a). Calculation of the sum

of Eq. (20). The corresponding diagrams are shown in Fig. 7.
Averaging over impurities results in the renormalization of
the effective interaction vertex between the Coulomb and
Cooper pair propagators. The renormalized velt€®,) is
given by the sum of two diagrams shown in Figb)7that
lead to the following expression:

T 1

re,)=
() Qn""‘4‘q50<an<(),n €n

s (At
o0 \En  Ent 28n+Qn+8q5'

(B1))

Using Eg.(B1)) the resulting expression for the tekX,) in
Eqg. (20) can be written as

(X)) =8mT 2 V(Qn,K(Q,qTAQ,),
q,Q2,>0

(B2)

whereK(Q,,q) is the propagator of superconducting fluctua-
tions defined in Eq(9). Expressing summations over the
fermionic frequencies in Eq$B1e) and(B1i) in terms of the
di-y functions after some rearrangements of different terms
in Egs.(Ble) and(B1li), we obtain Eq(219 for the suppres-

of Figs. 6g)—6(i) again can be reduced to the evaluation of asion of superconducting transition temperature due to fermi-

single diagram shown in Fig.(®) resulting in

onic mechanism.
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