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Hydrodynamics of the Quantum Hall Smectics
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We propose a dynamical theory of the stripe phase arising in a two-dimensional electron liquid near
half-integral fillings of high Landau levels. The system is modeled as a novel type of a smectic liquid
crystal with Lorentz force dominated dynamics. We calculate the structure factor, the dispersion relation
of the collective modes, and their intrinsic attenuation rate. We show that thermal fluctuations cause a
strong power-law renormalization of the elastic and dissipative parameters familiar from the conventional
smectics but with different dynamical scaling exponents.

PACS numbers: 73.40.Hm, 24.10.Nz, 73.20.Mf, 75.40.Gb
Planar arrays of interacting lines or stripes have become
a paradigm for many different physical systems, including
domain walls in magnets, layered superconductors, bio-
physical systems, liquid crystals, and charge density waves
(CDW) [1]. A unidirectional CDW or the stripe phase
was also predicted [2] to form in GaAs two-dimensional
(2D) electron systems when the occupation of the third or
a higher Landau level is close to 1

2 [3]. This prediction was
attested by a recent discovery of a dramatic magnetotrans-
port anisotropy [4] in the indicated range of filling factors.
The easy (low resistance) and hard (high resistance) current
directions are thought to be along and across the stripes,
respectively. In order to have a better foundation for the
magnetotransport studies, one has to first understand the
intrinsic dynamics of the stripe phase, without intervening
disorder effects [5]. Recent investigations [6–8] revolved
around the instability of the stripes against the 2kF modu-
lation along the direction of the translational order, which
would transform the system into a highly anisotropic
Wigner crystal. According to MacDonald and Fisher [8],
such an instability appears only at temperatures T below
1 mK. Here we address another interesting regime of rela-
tively high T where the 2kF modulation is absent and,
moreover, the sole periodic modulation is due to the main
CDW harmonic with wave vector q0. In classical terms,
the electron density at the topmost Landau level is of the
form n�r, t� 1 ReC�r, t�, where C � jCjeiq0�x2u� is the
CDW order parameter. (We chose the x̂ direction to be per-
pendicular to the stripes.) Although oversimplified, this
classical picture correctly identifies the low-frequency
long-wavelength degrees of freedom: the coarse-grained
component n of the total density, and the CDW phase
(or the displacement field) u. It is natural to expect that
at sufficiently small v and q the dynamics of u and
n is governed by a certain hydrodynamic theory. The
formulation of such a theory is the subject of this Letter.
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We begin by writing down an effective Hamiltonian,
from which we derive the hydrodynamic equations of mo-
tion, the spectrum of the collective modes, and the struc-
ture factor. Next, we study the renormalization of the bare
parameters of the theory by thermal fluctuations. Our re-
sults can be verified by measuring the transmission of the
microwaves and surface acoustic waves as well as inelas-
tic light scattering techniques provided that the samples are
of high enough mobility so that the disorder effects, which
we ignore here, are not important.

Effective Hamiltonian.—Our first step is to construct an
effective Hamiltonian for n and u, which (a) is rotationally
and translationally invariant and (b) reflects the specific
properties of the system, such as the long-range Coulomb
interaction. Very useful in this process is the similarity [6]
to smectic liquid crystals [9]. The resultant form of the
effective Hamiltonian is as follows:

H �
1
2

Z
d2r�YE2�u� 1 E�u�D 1 K�===2u�2 1 x21dn2

1 Fn 1 2CE�u�dr 1 ry2� , (1)

where E�u� � =xu 2 1
2 �===u�2 in the usual rotationally in-

variant strain [9], Y and K are the compression and bend-
ing elastic moduli, x is the compressibility [10], D is an
auxiliary parameter (counterterm), needed to guarantee the
condition �=xu� � 0, r � mn is the mass density, and
dr � r 2 r0 is its deviation from the equilibrium value
r0 � mn0. F�r� �

R
d2r 0 dn�r0�U�r 2 r0� is the elec-

trostatic (Hartree) potential, with U�r� � e2�kr at large r
(see more details in [2]). The penultimate term in Eq. (1)
accounts for the dependence of the CDW periodicity on n0,
with C � �Y�m�≠ lnq0�≠n0. Finally, the last term is the
correction to the kinetic energy, with y being the velocity
of the electron fluid. This term is mainly a bookkeeping de-
vice: it vanishes after the projection on a single (topmost)
© 2000 The American Physical Society
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Landau level but enables us to derive the equations of mo-
tion via the standard Poisson-bracket method [11,12].

Equations of motion.—The hydrodynamic fluctuations
of our system are governed by the equations

Fu � r0

�W 1 �v===�W
j=W j

2 lpj=W j
dH
du

� zu , (2)

Fj �
≠�ryj�

≠t
1 =j�rykyj� 2 rvc´jkyk 1 =jW

dH
du

1 Ljk�i===�yk 1 r=k�x21dr 1 F 1 CE� � zj ,
(3)

and the continuity equation �r 1 ===�rv� � 0. The nota-
tions here are as follows: W � x 2 u, ´jk is the unit
antisymmetric tensor, and vc � eB�mc is the cyclotron
frequency. Functions Ljk�q� describe dissipation. As in
the 3D case [9], they can be parametrized by viscosities hi ,

Ljk�q� � h4qjqk 1 djkh3q
2
x 1 djxdkx

3 �h3q
2 1 �h1 2 4h3 1 h4 2 2h5�q2

x�
1 �h3 2 h4 1 h5�qx�qjdkx 1 qkdjx� . (4)

(There is no analog of h2 in 2D.) One more dissipative co-
efficient, lp , [Eq. (2)] describes the permeation, i.e., the
mass transport across the stripes. At relatively high T ,
such that jCj & n0, lp 	 �h3q

2
0�r0v2

c � �n0�jCj�2. Fi-
nally, za’s in Eqs. (2) and (3) are the Langevin noises,
which satisfy the fluctuation-dissipation theorem,

�zu�1�zk�2�� � 0, 1�2� � 
r1�2�, t1�2�� , (5)

�zu�1�zu�2�� � 2kBTlpr0d�1 2 2� , (6)

�zj�1�zk�2�� � 2kBTLjk�i===�d�1 2 2� . (7)

The main difference of our model from the conventional
smectics is the presence of the strong magnetic field. As
we will see below, it drastically changes both the linearized
and nonlinear dynamics of the system.

Field-theory description.—Our ultimate goal is to cal-
culate various correlation functions, e.g., the dynamical
structure factor,

S�q, v� � �N0m
2�21

Z
dt eivt�rq�t�r2q�0�� , (8)

where N0 is the total number of electrons at the topmost
Landau level, and �· · ·� stands for the thermal averaging, or,
equivalently, the averaging over the Langevin noise. The
latter can be done in a systematic way by means of the
Martin-Siggia-Rose (MSR) formalism [13], whose field-
theoretic version was previously applied to the conven-
tional smectics by Kats and Lebedev [12].

The implementation of the MSR method begins with
enforcing the equations of motion by d-function-type
weight factors, d�Fa 2 za�, in the path integral over Fa.
These d functions are then represented by integrals of
exp�ipa�Fa 2 za�� over auxiliary dynamical variables pa,
which enables one to average over the Gaussian noise za.
Finally, one changes the integration variables from Fa to
Vi � ryi�r0 and u. If we denote by Fnl

a the nonlinear
terms in Fa and introduce vectors fy � 
Vy,Py�, Vy �

u,Vx ,Vy�, Py � 
pu,px ,py�, then the resultant action
becomes

A � 2i
Z

dt
Z

d2r paF
nl
a �u, y� 2 lnJ 1 A0 , (9)

A0 �
1
2

Z d2q
�2p�2

Z dv

2p
fy

qvG21
0 �q, v�fqv , (10)

where J � jdet≠Fa�≠Vbj is the Jacobian and G0 is the
(bare) propagator of the following block-matrix form:

G0 �

"
GVV 2iGVP

2iGy
VP 0

#
. (11)

Two particular components of G0, Guu, and Gupx ,

Gupx �q, v� �
2is2

Q�q�s2 2 ivñ�q� 2 v2 v2
c

v2
p �q�

, (12)

Guu�q, v� �
kBT
r0v

�Gupx �q, v� 2 Gupx �q, 2v�� , (13)

will play an important role in the later discussion. Here
we introduce the notations Q�q� � �Yq2

x 1 Kq4��r0,
v2

p�q� � n0q2�U�q� 1 x21��m, ñi � hiq2�r0, c �
qx�q � cosu, s � qy�q � sinu, and

ñ�q� � ñ3 1 c2s2�ñ1 2 4ñ3 1 ñ4 2 2ñ5� . (14)

Equations (12) and (13) are obtained by neglecting v, lp ,
ñi , and C compared to quantities proportional to “large”
frequencies vc and vp .

Harmonic theory.—If only the quadratic part A0 of the
full action is retained, then the correlators of the velocity
fields Va are given by the components GVaVb of G0 and can
be found after straightforward albeit tedious algebra. The
continuity equation enables us to relate these correlators to
the structure factor. This way we get

S�q, v� �
2

mv
Im

kBTq2�Qs2 2 ivñ�
Qv2

p�s2 1 lpñ� 2 ivv2
ca 2 v2v2

c
,

(15)

for v ø vc and, in particular,

S�q, 0� � 2kBT
q2

mv4
p

v2
clp 1 c2ñ3 1 s2ñ4

s2 1 lpñ
. (16)

The poles of S�q, v� correspond to the collective modes.
Two of them (magnetophonons) are gapless:

vm�q� � sin2u

µ
Y
r0

∂1�2 vp�q�q
2vc

2
i
2

a�q� (17)

and its counterpart v � 2v�
m�q�. Their attenuation rate

a�q� is given by

a�q� � lpQ 1 v22
c �v2

p�q�ñ 1 Q�ñ3c
2 1 ñ4s

2�� ,
(18)
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up to terms proportional to C and higher powers of ñi and
lp . The other two collective modes (magnetoplasmons)
have a large gap vc. Thus, the number of the hydrody-
namic (gapless) modes coincides with the number of the
hydrodynamic variables (n and u) as it should [14].

For Coulomb interaction vp�q� ~ q1�2; hence, within
the harmonic theory the magnetophonons have vm�q� ~

q3�2 dispersion, similar to that of the Wigner crystal [15]
but with the u-dependent prefactor. Propagating magne-
tophonon modes exist as long as u is not too small so
that Revm�q� ¿ a�q� in Eq. (17); otherwise, they are re-
placed by the two overdamped modes:

vfast�q� � 2ia�q� ,

vslow �q� � 2
i

a�q�

µ
qxqy
q

vp

vc

∂2 Y
r0

.

Below we will see that at small enough q the magne-
tophonon dispersion relation and their damping are signifi-
cantly modified by the anharmonisms.

Renormalization.—Our next step is to calculate the
propagator G � �G21

0 1 S�21 of the full theory, Eq. (9),
treating the previously ignored nonlinear terms as per-
turbations. We expect that G has the same form as G0
but with Y , K , and other parameters replaced by v and
q-dependent (renormalized) values YR�q, v�, KR�q, v�,
etc. The perturbative corrections to Y , K , and C are de-
termined by the self-energy component Supx �q, v�. Simi-
larly, the corrections to ni’s are determined by Spjpk �q, v�.
To the lowest order in T they are given by the diagrams
shown in Fig. 1.

Doing the power counting with the help of Eqs. (12),
(13), and the relation kx 	 k2�K�Y �1�2, where k is the
loop momentum, we quickly discover that Supx and Spjpk

are infrared divergent. To resolve this problem, we uti-
lize the renormalization group (RG) procedure formulated
in d � 3 2 e spatial dimensions [one x dimension plus
�d 2 1� “�” dimensions]. Each step of our RG trans-
formation consists of integrating out the cylindrical shell
5830
FIG. 1. Self-energy diagrams.

Le2l , k� , L in the loop diagrams of Fig. 1, followed
by rescaling of the momenta k � k0e2l to restore the ul-
traviolet cutoff L 	 q0 on k�. It is convenient to rescale
the u field as well, u�r� � u0�r0�el , to preserve the struc-
ture of E�u�. We did not find it necessary to rescale the
frequencies or impose a cutoff on kx [16]. The one-loop
RG equations are given by

d
dl

Y � dY 2
g
8
Y ,

d
dl

C � dC 2
g
8
C , (19)

d
dl

K � �d 2 2�K 1
g

8�d 2 1�
K , (20)

d
dl

g � �3 2 d�g 2
d 1 2

16�d 2 1�
g2, (21)

d
dl

n2
3 � 2dn2

3 1
g

2�d 2 1�

3

"
v2

c

v2
p�Le2l�

K�l�
r0

e�d12�l 1
n

2
3

4

#
, (22)

where g � kBTY1�2K23�2Ld23�Sd21 is the dimension-
less coupling constant, with Sd21 � �4p��d21��2G�d21

2 ��2.
Equations for other viscosities are similar to (22) and are
not shown.

The solutions of the RG equations (19)–(22) are as
follows:
g�l� � g� 1
g0 2 g�

D
, D � 1 1

g0

g�

�e�32d�l 2 1�, n2
3�l� � e2dl

∑
n2

3�0� 1
1

2�d 2 1�
v2

c

v2
p�Le2l�

K0

r0

∏
D2��d12�,

(23)

Y �l� � Y0e
dlD2gY , C�l� � C0e

dlD2gY , gY � 2
d 2 1
d 1 2

, K�l� � K0e
�d22�lDgK , gK �

2
d 1 2

. (24)
As one can see, for small e � 3 2 d, g flows to a weak
coupling fixed point g� � 16�3 2 d� �d 2 1���d 1 2�,
justifying our one-loop RG. The renormalized values of
the parameters of the harmonic theory are found by rescal-
ing back to the original coordinates, YR�v, q� � Y �l�e2dl ,
KR�v, q� � K�l�e2�d22�l , n

R
3 �v, q� � n3�l�e2dl , etc.,

where l is the smallest of the three cutoffs lx , l�, lv to
be found from equations K�lx�L4 � q2

xe
2lxY �lx�, L �

q�el� , and v2
cv � v2

p�Le2lv �n3�lv�L2e2�d12�lv . These
equations give rise to the characteristic crossover length
and frequency scales jx � �K5
0 �Y0�1�2��kBT �2, jy �

�K3
0 �Y0�1�2�kBT , and vy � �K0�r0�1�2vp�j21

y ��vcj
2
y .

Taking Eq. (24) for the face value, we obtain gY �
gK � 1

2 in 2D (e � 1) and discover the following three
types of asymptotic behavior:

YR 	 Y0�jyqy�1�2, KR 	 K0�jyqy�21�2,

nR
3 	

K0

r0vyj2
y�qyjy�3�4 , nR

i 	
aiY0

r0vy�qyjy�7�4

(25)
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for qx ø j21
x �qyjy�3�2, qy ø j21

y , v ø vy�qyjy�9�4,

YR 	 Y0�jxqx�1�3, KR 	 K0�jxqx�21�3,

nR
3 	

K0

r0vyj2
y �qxjx�1�2 , nR

i 	
aiY0

r0vy�qxjx�7�6

(26)

for qx ø j21
x , qy ø j21

y �qxjx�2�3, v ø vy�qxjx�3�2,
and

nR
3 	

K0

r0j2
y

v22�3
y v21�3, nR

i 	
aiY0

r0v
2�9
y v7�9

(27)

for v ¿ vy�qyjy�9�4, v ¿ vy�qxjx�3�2. Here a1 � �1 2

r�2, a4 � r2, a5 � �1 2 r�r , and r � r0C0�Y0. Thus,
a1a4 � a2

5, which entails the relation [11] Dh1Dh4 �
�Dh5�2 derived earlier for the conventional smectics.

Discussion.—Our one-loop-level results for YR and KR

turn out to be exact [17] for the static limit [Eqs. (25) and
(26)]. It is possible that this success transcends to the dy-
namics, in which case the scaling exponents for viscosities
in Eqs. (25)–(27) would be exact as well.

Within the domain of anomalous hydrodynamics sum-
marized by Eqs. (25)–(27), the magnetophonon dispersion
relation becomes

Revm�q� 	 sc7�6�jxq�5�3 vp�j21
x �

vcjx

s
Y0

r0
, (28)

Imvm�q� 	 s2c5�6�jxq�11�6�1 2 2r�2 vy

jy

s
K0

Y0
(29)

for a finite fixed u and q ø j21
x . In contrast to the case

of conventional smectics [11,12], the scaling of Imvm�q�
is cut off by lx [Eq. (26)] not lv [Eq. (27)].

Strictly speaking, the smectic behavior in 2D can per-
sist only up to the length scale smaller than the average
distance jd 	 exp�Ed�2kBT � between dislocations, Ed 	
K0 being the dislocation energy [18]. The anomalous hy-
drodynamics can be observed if jx , jd , which is satis-
fied at low T where jd is exponentially large [19].

In conclusion, we formulated a novel long-wavelength
low-frequency effective theory of the stripe phase arising
in a two-dimensional electron liquid near half-integral fill-
ings of high Landau levels. Our theory applies at relatively
high temperatures and in the clean limit. We demonstrated
that the collective mode properties of the system exhibit
nontrivial power-law scaling, which can be verified by mi-
crowave or surface acoustic wave measurements at a finite
wave vector or by inelastic light scattering experiments.
Our future plans include applying the proposed hydrody-
namic approach to the problem of the magnetotransport.
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