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Superconducting Vortices in ac Fields: Does the Kohn Theorem Work?

N. B. Kopnin1,2 and V. M. Vinokur3

1Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT Finland
2L. D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia

3Argonne National Laboratory, Argonne, Illinois 60439
(Received 13 February 2001; published 13 June 2001)

Electrodynamics of clean pinning-free type II superconductors in the mixed state is derived using the
Boltzmann kinetic equations for excitations. The condition of the vortex cyclotron resonance is found.
The reason why this resonance does not comply with the Kohn theorem is discussed.
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Microwave and far-infrared measurements on type II
superconductors offer an efficient experimental tool for
studying vortex dynamics and kinetics of superconductors
(see, for example, [1] and references therein). Yet theoreti-
cal aspects of electrodynamics of type II superconductors
remain a matter of controversies. The full description of
the electrodynamics of the mixed state has to include vor-
tex motion, where several unresolved issues including the
value of the vortex mass and the accurate account of forces
acting on vortices remained lately unresolved. Recently,
substantial progress has been achieved in understanding
underlying microscopic mechanisms of vortex dynamics
[2–7]. This opens a new route for a full description of
the mixed-state electrodynamics which was treated so far
within phenomenological models only [1,8–10]. In this
Letter, we develop a rigorous microscopic approach to the
mixed state ac response of a clean type II superconductor
using the Boltzmann kinetic equation for core excitations
and calculate the ac conductivity. We discuss cyclotron
resonance and resonant friction effects. We consider a
pinning-free sample with a thickness much smaller than
the London penetration length such that bending of vor-
tex lines can be neglected [11]. In this case, the magnetic
field is nearly uniform. We find, however, that, because
of coupling of normal electrons to the heat bath, the vor-
tex cyclotron resonance even in ideal superconductors does
not generally follow the Kohn theorem [12] formulated for
a system of interacting electrons in a uniform magnetic
field. The violation of the Kohn theorem can be tested
in far-infrared experiments on superclean materials with
the quasiparticle mean-free time t . EF�T2

c (we use units
with h̄ � 1).

Electric fields and forces.—The ac conductivity is de-
termined by a general relation j � ŝ�v�E. An ac electric
field in a type II superconductor appears not only because
of the motion of vortices: an additional field is needed to
support an acceleration of Cooper pairs. Averaging the
local electric field over the space and taking into account
that the vortex phase is not single valued, we find

E � Eac 1 c21�B 3 vL�, Eac � �m�e� �≠vs�≠t� .
(1)
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Here, vL is the vortex velocity. The superconducting veloc-
ity vs � �=x 2 2eA�c��2m is produced by a static vor-
tex array and by nonstationary fields. The part due to static
vortices averages out. We assume a uniform in space Eac
as it is induced by a microwave irradiation.

The electric field Eac and the vortex velocity vL act
as two independent perturbations producing deviation of
electrons from equilibrium. The additional electric field
can exist even when vortices are totally pinned vL � 0,
while Eac vanishes for a steady motion of vortices. As
we shall see, the responses of the system to these two
perturbations are different: in contrast to the additional
field that simply accelerates electrons, the vortex velocity
causes changes in quasiparticle distribution by affecting
the entire energy spectrum of excitations. As a result, the
total force exerted on vortices by the environment is

Fenv � 2pNdO�v�vL 1 pNdH�v� �ẑ 3 vL�
1 �bO�v� �ẑ 3 Eac� 1 bH�v�Eac�F0 sgn�e��c .

(2)

We take the z axis along the vortex circulation, ẑ �
ĥ sgn�e�, where ĥ is the unit vector along the magnetic
field; F0 � pc�jej is the magnetic flux quantum. dO,H
describe the vortex friction and the Hall effect, respec-
tively [2], while bO,H parametrize the force created by
the field Eac. In general, bO,H fi �Njejc�B�dO,H. The
equality would have taken place if the responses were
identical.

The parameters d and b are functions of the external
frequency v. In particular, dO,H�v� contain the iner-
tial effects. Indeed, in case of a small v, the first-order
terms in the v expansion of dO,H�v� describe the force
proportional to the vortex acceleration and thus deter-
mine the vortex mass tensor [6]. Without pinning, the
environment is translationally invariant; the force Fenv is
thus balanced by the Lorentz force FL � �F0�c� � j 3 ĥ�
from the transport current generated in the superconduc-
tor, Fenv 1 FL � 0. For H ø Hc2, the average transport
current j is equal to the current far from the vortex; it con-
sists of a supercurrent and a current carried by delocalized
quasiparticles: j � Nsevs 1 j�qp�, where Ns is the super-
conducting density. The quasiparticle current,
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j�qp� � NeaH�v�vL 1 NeaO�v� �ẑ 3 vL�
1 s

�qp�
O �v�Eac 1 s

�qp�
H �v� �Eac 3 ẑ� , (3)

is driven by Eac and vL. Again, aO,H fi �B�Njejc�s
�qp�
O,H.

We omit the argument v for brevity in what follows.
Kinetic equation.—We consider s-wave superconduc-

tors in magnetic fields H ø Hc2, where the factors d, a,
b, and s�qp� can be explicitly calculated. Assuming that
the particle wavelength is much shorter than the coherence
length, pFj ¿ 1 (which holds in almost all superconduc-
tors), we use a semiclassical scheme.

The quasiparticle distribution f for the states localized
in vortex cores obeys the Boltzmann equation [7],

≠f
≠t
1
≠f
≠f

≠en

≠m
2
≠en

≠f

≠f
≠m

�

µ
≠f
≠t

∂
coll

, (4)

where the quasiclassical spectrum en�m� of a particle plays
the role of its effective Hamiltonian, m is the angular mo-
mentum, and f is the azimuthal angle in the plane per-
pendicular to the vortex axis. The spectrum en�m� also
depends on the radial quantum number n. The spectrum
has an anomalous branch [13] n � 0 that crosses zero of
energy as a function of m and runs from D` to 2D` as
m varies from 2` to 1`. The other branches n fi 0 are
concentrated [14] near the gap edges 6D`; they do not
cross zero of energy but return to the same 1D` or 2D`
for m ! 6`. We denote vn � 2≠en�≠m.

We put f � f�0� 1 f1. The equilibrium part is f�0� �
1 2 2ne � tanh�e�2T�, where ne is the Fermi func-
tion. The driving term in Eq. (4) is ≠f�≠t � �≠f�0��
≠e� �≠en�≠t�. The energy contains a time dependence
through m�t� � ��r 2 vLt� 3 p� ? ẑ and due to the work
produced by Eac:

≠en

≠t
�
≠en

≠m
��pF 3 vL� ? ẑ� 1 e�vF ? Eac�zn .

Here, znvF is the “group velocity” in the state en. The
factor zn � 1; we will not need an explicit expression for
zn in what follows. We use the relaxation-time approxi-
mation for the collision integral �≠f�≠t�coll � 2f1�tn,
where tn � t. With this approximation, the mean-free
time can be of any origin. We assume that the most ef-
fective relaxation is brought about by impurities, as is the
case in almost all practical superconducting compounds.

Delocalized particles with jej . D` move mostly far
from the vortex cores, whereD is constant and the Doppler
energy pFvs is small. It can be shown that the kinetic
equation for delocalized excitations is

≠f

≠t
1
≠f

≠p
? f 1 vg ?

≠f

≠r
�

µ
≠f

≠t

∂
coll

, (5)

similar to that for a particle in a magnetic field with a semi-

classical spectrum ep �
q
j2

p 1 D
2
` 1 pFvs, where jp �

p2�2m 2 EF . The derivation of Eq. (5) will be given else-
where (see also Ref. [15]). The elementary Lorentz force
and the energy derivative in Eq. (5) are
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f �
e

c
vg 3 B �

vc

g0
� pF 3 ẑ� ,

≠e

≠t
� vL ? f 1 evF ? Eac .

Here, vc � �e�B�mc is the cyclotron frequency, vc �
�H�Hc2�v0 ø v0 for H ø Hc2; vg � ≠ep�≠p � vF�
g0 is the group velocity, and g0 � e�

p
e2 2 D2

`. The
second term in ≠e�≠t comes from the Doppler energy
pvs. The spatial derivative of f1 drops out: For an
extended state, f1 should be independent of coordinates
since a particle trajectory goes through many vortex
unit cells at various distances from vortices. For the
spectrum ep as above, the collision integral is [16]
�≠f�≠t�coll � 2f1�g0t.

We put f1 � fy 1 fac, where

fy �2
≠f�0�

≠e
���vL 3 pF� ? ẑ�gO 1 �vL ? pF �gH� , (6)

fac �2
e

m

≠f�0�

≠e
��pF ?Eac�g 0

O 1 ��pF 3 Eac� ? z�g0
H� .

(7)

fy and fac correspond to the off-diagonal and diagonal
terms, respectively, in the perturbation Hamiltonian of
Ref. [17]. Equation (4) gives, for localized states,

g6 �
vn

vn 7 v 7 i�tn
, g0

6 �
zn

vn
g6 , (8)

where g6 � gH 6 igO. Equation (5) for delocalized ex-
citations yields

g6 �
vc

vc 7 vg0 7 i�t
, g0

6 �
g0

vc
g6 . (9)

The responses of localized and delocalized excitations are
different. They resemble, respectively, “vortex core” and
“current pattern” responses introduced in Ref. [1].

The quasiparticle current far from the vortex core is

j�qp� � 2
e

p

Z dpz

2p
df

2p
de

2
pFg0f1 . (10)

Using Eqs. (6) and (7), we recover Eq. (3) with

aO,H �
Z
e.D`

g0gO,H
≠f�0�

≠e
de , (11)

s
�qp�
O,H �

Ne2

mvc

Z
e.D`

g2
0gO,H

≠f�0�

≠e
de , (12)

where gO,H are to be taken from Eq. (9).
The force from the environment is [2]

Fenv � 2
1
2

X
n

Z dpz

2p
dfdm

2p
vn�z 3 pF� f1

2
Z

del

de
2

dpz

2p
df
2p

�z 3 pF� f1 .

The first term takes care of localized excitations while the
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second one is due to delocalized states. As a result, we get
Eq. (2) where the vortex friction parameters are

dO,H � d
�loc�
O,H 1

Z
del

de

2
≠f�0�

≠e
gO,H , (13)

while bO,H � b
�loc�
O,H 1 �Ne2�mvc�aO,H, where

d
�loc�
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**X
n

Z vndm

2
≠f�0�

≠e
gO,H

++
, (14)

b
�loc�
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Ne2

m

**X
n

Z vndm
2

≠f�0�

≠e
g0

O,H

++
(15)

come from localized excitations. We write 		. . .

 for an
average over the Fermi surface with the weight p2

� �
p2

F sin2u, where u is the angle between pF and the z axis.
ac response.—Collecting all the terms in the force bal-

ance with the help of Eqs. (1)–(3), we obtain

�Ns�N � �vs 3 ẑ� 1 aH�ẑ 3 vL� 2 aOvL

� �e�mvc� �bO�ẑ 3 E� 1 bHE� . (16)

where vs and E now stand for the space-averaged values,

bO,H �
mvc

Ne2
�s�qp�

O,H 2 b
�loc�
O,H � 2 aO,H ,

aO,H � �dO,H 2 aO,H� 1 bO,H .

The term with b�loc� in aO,H is proportional to the vortex

density and is thus small as compared to d
�loc�
O,H .

The solution is conveniently written for a circu-
larly polarized wave. We put E6 � Ex 6 iEy and
yL6 � yLx 6 iyLy , etc., for two polarizations Ex � E 3
cosvt, Ey � 7 sinvt and introduce d6 � dH 6 idO,
a6 � aH 6 iaO, and so on. The parameters d6, a6,
b6, and s

�qp�
6 are expressed through the factors g6 via

Eqs. (11) to (15) in the same way as the correspond-
ing dO,H, etc. are expressed through gO,H. Solving
Eqs. (1) and (16), we write the current in the form j6 �
s6�v�E6, where

s6�v� � s
�qp�
O 7 is

�qp�
H 1

ie2Ns

mv
2

iNe2

mvc
L6 ,

L6 �

µ
Ns

N
vc

v
7 b̃6

∂ µ
Ns

N
vc

v
7 b6

∂

3

µ
Ns

N

vc

v
7 a6

∂21

.

(17)

Here, b̃6 � �mvc�Ne2�s�qp�
6 2 a6.

In some publications (see, for example, Ref. [9]),
a simple model is used that neglects Eac in the
force balance:

c21F0�j 3 ẑ� � hvL 1 h
0�vL 3 ẑ� .

At the same time, the transport current is assumed to
be simply j � Nsevs. This model corresponds to a �
b � s�qp� � b � b̃ � 0 such that aO,H � dO,H while
h � pNdO, h0 � pNdH. Our analysis shows that this
model is justified only in the case when the delocalized
017003-3
quasiparticles do not participate in the response. This
regime is realized when vct ø 1 as explained below.

Cyclotron resonance.— In the normal state Ns �
L6 � 0, while g0 � 1. For vct ¿ 1, the conductivity

s6�v� � s
�qp�
6 in Eq. (17) has resonances at v � 6vc

[see Eq. (9)] in accordance with the Kohn theorem. In
the superconducting state, however, the Kohn theorem is
violated (see discussion below): each resonance trans-
forms into an absorption band at v , vc because the
poles in Eq. (9) acquire an energy dispersion through
g0�e�. The attenuation results from the Landau damping at
delocalized states [15]. Note that the condition vct ¿ 1
is not realistic for practical superconducting materials.

In the superconducting state, s6�v� has resonances at

vaH�v� � 6�Ns�N�vc . (18)

It is the condition aO & aH that is required for a sharp
resonance rather than vct ¿ 1. The inequality aO & aH

is well satisfied in the limit v0t ¿ 1, i.e., t ¿ EF�T2
c ,

provided v,vc ø t21, when the width of the resonance
is associated mostly with the localized states: a

�loc�
O �

�v0t�21 and a
�del�
O � �vct�e2D`�T while aH � 1. The

dissipation at delocalized states grows with increasing t
and reaches its maximum for vc � t21. With a further
increase in t, the dissipation at delocalized states goes
down and the low-damping condition is again satisfied if
v . vc. However, if v , vc, a finite attenuation comes
from the Landau damping discussed above; it is generally
not small: ReaO � 1 even for vct ¿ 1 unless T ø D`.

The resonant frequency is of the order of, but does not
coincide exactly with, vc. This violates the Kohn theorem
[12] which states that the only resonance in the system of
electrons should occur at the frequency vc irrespective of
their mutual interaction. This is not surprising though: the
Kohn theorem may not work in superconductors (despite
the statement of Refs. [9,10]) because there are, in fact,
two different kinds of interacting charge carriers, i.e., su-
perconducting and normal electrons, that do not form a
Galilean invariant system. Indeed, the normal electrons are
in equilibrium with the heat bath (crystal lattice, sample
boundaries, etc.) in absence of perturbations and make
thus a preferable frame of reference.

One has to distinguish between ac and dc drives at this
point. Upon switching a dc electric field, both supercon-
ducting and normal components adjust to it after a char-
acteristic relaxation time in which a steady-state motion
is established. Consider this case in more detail. For a
steady-state motion of vortices, v ! 0, the additional field
Eac � 0. Equation (17) gives j6 � 7i�Ne2�mvc� 3
d6E6, i.e.,

j � �Ne2�mvc� �dOE 1 dH�E 3 ẑ�� , (19)

as it should be according to the force balance and Eqs. (2)
and (3) with Eac � 0. The effective conductivity is
then determined by the vortex friction parameters dO,H.
This couples the vortex velocity vL with the superflow
vs through the factors dO,H and aO,H. For example, in
017003-3
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an ideal superconductor with t ! `, one has gH � 1,
gO ! 0. Therefore dO,aO ! 0. The function under the
integral in Eq. (14) reduces to the full derivative of f �0�.
The terms with n fi 0 vanish because en�m� returns to
the same gap energy D` (or to 2D`) as m goes to 6`.
The term n � 0 does not disappear since e0�m� varies
from D` to 2D`. One obtains d

�loc�
H � tanh�D`�2T �

and d
�del�
H � 1 2 tanh�D`�2T �. Thus, dH � 1 and

j � NevL [see Eq. (19)]. At the same time aH � Nn�N ,
where Nn is the density of normal electrons. Equation
(3) results in j�qp� � NnevL. Since j � Nsevs 1 NnevL,
we have vs � vL: in an ideal superconductor, vortices
move together with the superflow in accordance with the
Helmholtz theorem. In turn, the quasiparticle current
j�qp� � NnevL implies that delocalized quasiparticles
with jej . D` also move with the velocity vL. The
quasiparticles localized in the cores have the distribution
Eq. (6) with gH � 1 and gO � 0, i.e., they also move
with vL. Therefore, the steady-state solution for t ! `
corresponds to a motion of the entire system with the
superflow velocity vs. The Galilean solution is restored.

However, the Galilean invariance holds only for a
steady-state flow. In time-dependent conditions, the
responses of superconducting and normal subsystems are
different. In the limit vt ! `, these subsystems do not
come to equilibrium with each other, and the steady-state
solution is never reached. Thus, the Kohn theorem which
treats a single system of electrons is not applicable.

Consider the most realistic regime vct ø 1 in more
detail. The subsystem of electrons with jej . D` has
gO,H ø 1 [see Eq. (9)]; it is in equilibrium with the heat

bath. We have aH � d
�loc�
H . If v0t ¿ 1, electrons in

the vortex cores are in equilibrium with the superconduct-
ing component rather than with the heat bath. In this
limit, aO � �v0t�21 ø 1 while gH � 1 for jej , D`
and aH � tanh�D`�2T �. Therefore, there are two inter-
acting subsystems: one is composed of superconducting
electrons in equilibrium with localized excitations, another
subsystem is represented by delocalized excitations with
jej . D` in equilibrium with the heat bath. It is clear
that the resonance of the entire system cannot be described
by the Kohn theorem. The ratio Ns�NaH that stands
in Eq. (18) represents the temperature-dependent relative
weight of the two subsystems. If delocalized excitations
with jej . D` are absent, the resonant frequency turns to
vc, and the Kohn theorem is restored. This takes place for
T ø D`. On the contrary, vres�vc � D�Tc according to
Eq. (18); the ratio decreases for T ! Tc.

Resonant friction.—The vortex response displays an-
other interesting feature at higher frequencies v � v0
if v0t ¿ 1: The factors gO,H have resonances at lo-
calized states when v � v0� pz�. This may happen if
v . min�v0� pz��. Since v0� pz� is an increasing func-
tion of jpzj, the friction parameter dO has a Van Hove sin-
gularity at the edge of the absorption band pz � 0 [18,19]:
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dO ! `. Simultaneously, b
�loc�
O ! `, both dO and b

�loc�
O

being real. The quantities aO and s
�qp�
O remain finite.

The parameter gO for delocalized states with jej . D`
becomes gO � ivc�vg0. As a result, the last term in
Eq. (17) gives an imaginary contribution which is much
smaller than the first two terms. Equation (12) results in
s

�qp�
O �v� � iNne2�mv; hence, the total conductivity be-

comes imaginary s6�v� � iNe2�mv. The response dis-
plays an antiresonance: the vortex dissipation vanishes
because vortex motion freezes when the friction becomes
infinitely large as noticed in [9,17,19].

In conclusion, we have developed a microscopic
theory for the ac response of the mixed state of type II
superconductors. We derived the ac conductivity in a
pinning-free sample and discussed cyclotron resonance
and resonant friction effects.
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