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We report the results of numerical simulations of nonisothermal dendritic flux penetration in type-II
superconductors. We propose a generic mechanism of dynamic branching of a propagating hot spot of
a flux flow/normal state triggered by a local heat pulse. The branching occurs when the flux hot spot
reflects from inhomogeneities or the boundary on which magnetization currents either vanish, or change
direction. The hot spot then undergoes a cascade of successive splittings, giving rise to a dissipative
dendritic-type flux structure. This dynamic state eventually cools down, turning into a frozen multifila-

mentary pattern of magnetization currents.
DOI: 10.1103/PhysRevLett.87.067003

The formation of a macroscopic current-carrying criti-
cal state in type-II superconductors occurs via penetration
of the magnetic flux front of pinned vortices from the sur-
face of the sample. This process is controlled by a highly
nonlinear electric field-current density (E-J) characteris-
tics E(J, T, B), which together with the Maxwell equations
determine macroscopic electrodynamics of superconduc-
tors [1-3]. Propagating magnetic flux causes joule heat-
ing, giving rise to global flux jumps and thermal quench
instabilities which are crucial for stable operation of cur-
rent-carrying superconductors [4,5]. The magneto-optical
imaging has revealed a new class of instabilities of the criti-
cal state, including magnetic macroturbulence [6,7], ki-
netic front roughening [8], magnetic avalanches [9], and
dynamic dendritic structures [10—12]. The latter have
been observed both on high-7, (YBa;Cu3zO; [10]) and
on low-T, (Nb [11]), superconducting films, and most re-
cently on the newly discovered MgB, [12]. These instabili-
ties are rather characteristic of superconductors; besides
they also display remarkable similarities with other den-
dritic instabilities in crystal growth [13], nonequilibrium
chemical and biological systems [14], and crack propaga-
tion [15].

We performed numerical simulations of coupled equa-
tions for the magnetic induction B(r,¢) and temperature
T(r,r) and found a new mechanism of flux fragmenta-
tion in superconductors, which is different from the well-
known bending instability of moving interface between
two phases [13], and results from the generic distribution
of magnetization currents in the critical state. Our results
give insight into vortex microavalanches and flux jumps in
superconductors.

We focus on a slab in a magnetic field By (Fig. 1), for
which distributions of the z component of magnetic induc-
tion, B(r, t), and temperature, T(r, t), are described by the
Maxwell equation coupled to the heat diffusion:

Co,T = divkVT — (T — Tp)/d + JEU.T), (1)
;B = —cV X E(J,T), J=1(c/4m)z X VB. (2)
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Here C(T) is the heat capacity, «(T) is the thermal
conductivity, #(T) is the heat transfer coefficient to the
coolant held at the temperature Ty, d = A/P, A is the
area of the sample cross section, P is the perimeter of
the cooled sample surface, and E(J,T) is the modulus
of the electric field, which essentially depends on both
the local temperature T(r,t) and the current density,
J(r,t) = (J? + Jyz)l/ 2. The spatial derivatives are taken
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FIG. 1. Graphic solution of the heat balance condition (T —
To)h/d = JE(6,J) in a superconductor. The power of the joule
heat release JE(J, ) is plotted as a function of T for J, <
Jn and J, > J,, where E(J, ) is given by Eq. (3), and 6 =
(T — Ty)/(T* — Ty). The inset shows the sample geometry,
the magnetic field is parallel to the z axis, the x axis is directed
along the sample surface, and y is perpendicular to the sample
surface. The local heat pulse (indicated as the large arrow)
triggers the magnetic hot spot propagation across magnetization
currents presented in detail in Figs. 2 and 3.
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with respect to x and y, while the term h(T — Ty)/d
accounts for the surface cooling [16]. We will consider
the case of high magnetic fields By, much greater then the
field of full magnetic flux penetration, B, ~ 4mJ.d/c,
for which E(J,T,B) = E(J,T, By).

The evolution of T(r,7) and B(r,¢) is mostly deter-
mined by the E(T,J) characteristic, which accounts for
the high-resistive flux flow state at J > J. and the low-
resistive flux creep state at J < J,., where J, is the critical
current density. The effects considered in this paper are not
very sensitive to the details of E(J, T), so for the numeri-
cal simulations of Egs. (1) and (2) we take the following
interpolation formula expressed in terms of observable pa-
rameters J., Ji, and p:

E = pJiIn[1 + exp(J — J.)/J1]. 3)

Here J1(T) = 9J/dInT is the dynamic flux creep rate, and
p(T) = p,B/B., is the flux flow resistivity. Below the ir-
reversibility field B < B*, where J; < J., Eq. (3) repro-
duces the main features of E(J, T) observed in experiment,
giving a linear flux flow dependence £ = (J — J.)p for
J > J. and the exponential dependence E = E.exp(J —
Jo)/Jy for J < J..

The similarity of Egs. (1) and (2) with generic reaction-
diffusion equations [14] is due to the thermal bistability
of superconductors [5], for which the heat balance con-
dition (T — To)h/d = JE(T,J) in the right-hand side of
Eq. (1) is satisfied for three different temperatures 7', as
shown in Fig. 1. Here the points O and 3 correspond to
two stable uniform states: a cold superconducting state
with T = T and a hot flux flow/normal state 75 self-
sustained by joule heating. As seen from Fig. 1, the
bistability occurs if the current density J exceeds a
threshold value J,,, for which pJ? = W(T* — To)/d.
Hence, J, = [(T* — To)h/dp]"/?, where T*(B) is
the irreversibility temperature at which J.(T™) = 0.
The superconducting state is unstable with respect to
the hot spot formation, if ay = (J./J,)*> > 1. For
typical parameters of HTS films at 7o = 42 K (p ~
100 uQcm, J. = 10°-10" A/em?, h ~ 1 W/ecm?K,
T — Ty ~50-100 K, and d =1 um), we obtain
as ~ 102-10%, thus the thermal bistability is a char-
acteristic feature of both high temperature (HTS) and
low temperature (LTS) superconductors, especially films
because of their higher J,. values [5].

We consider the case of weak joule heating, T'(x, y, ) =
T., for which we take into account only the most essential
temperature dependence of E(T), while C(T), h(T), and
k(T) can be taken at T = Ty. Then Egs. (1) and (2) can
be written in the following dimensionless form:

b = 3,[r(j,0)0.b] + a,[r(j,0)d,b], 4)
0 =V0 -0+ aj*r(j0). (5)

Here 6 = (T — Ty)/(T* — Ty), b =B/B,, and
j=1[(0.:b)* + (8yb)2:|1/2 are the dimensionless tempera-
ture, magnetic field, and current density, respectively, and
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B; = 4mwJiLy/c. The derivatives in Egs. (4) and (5) are
taken with respect to normalized time /1, and coordinates
x/Ly and y/Lj, measured in the thermal units ¢, = Cd/h
and L, = (dx/h)'/2. The evolution of 6(r,7) and b(r, r)
is controlled by two dimensionless parameters:

pJ12d
a=—-—.
h(T* — Top)

4K

= oc (6)

T

Here 7 is the ratio of the diffusivities of heat and mag-
netic flux, and a quantifies joule dissipation. For Nb
films of Ref. [11], we obtain 7 ~ 10 at 4.2 K, with
7 rapidly decreasing with increasing 7p. For HTS at
77 K, we obtain 7 ~ 1074=1075 <« 1. The nonlinear
resistivity r(j,0) = In[1 + exp(j — j.(6))]/j obtained
from Eq. (3) has asymptotics r = 1 — j./j in the flux
flow (j > j.) and r = exp(j — j.)/j in the flux creep
(j < je) states, where j. = J.(T)/J;. We linearize
je = jo(1 — @) around Ty, neglecting the temperature
dependencies of Jy, p [17].

We performed 2D numerical simulations of Egs. (4)
and (5) to calculate propagation of a magnetic hot spot of
resistive phase across a superconductor (see Fig. 1). The
process is initiated by a local heat pulse applied to the
sample surface, which models the experiment by Leiderer
et al. [10], who triggered the magnetic dendrite insta-
bility by a laser pulse. To address the effect of material
inhomogeneities, we considered both uniform supercon-
ductors with J. independent of spatial coordinates and
nonuniform superconductors with the critical current
density periodically modulated over macroscopic scales
27 /k, much larger than the spacing between flux lines,
Jo(x,y,T) = Joo(T)[1 + esin(kx)sin(ky)] with € < 1.
The latter case also models superconducting films with
periodic arrays of holes, which have recently attracted
much interest [18,19]. The resulting evolutions of the
temperature distributions shown in Figs. 2 and 3 display a
rather striking behavior which is described below.

For 7 <« 1, the heat pulse applied to a uniform su-
perconductor triggers a hot spot propagation across the
sample, as shown in Fig. 2a. Such propagation appears
stable until the hot domain reaches the center of the sample,
where magnetization currents change direction. The resis-
tive domain then undergoes a cascade of successive split-
tings into alternating stripes of low and high electric fields
and temperatures. After each splitting, the part of the resis-
tive domain near the central line cools down, but then the
hot filaments of the resistive state start propagating again
from the upper part of the resistive domain through the
preceding dendritic structure toward the central line. How-
ever, each time the hot filaments cross the central line, they
split again, causing new dendrites of alternating low and
high J filaments to grow, as shown in Figs. 2b and 2c.
Eventually the joule dissipation causes the electric field in
the hot dendritic structures to decay below the threshold,
thus a frozen entangled pattern of current filaments forms.
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FIG. 2. Gray-coded dynamic temperature maps 6(r, r) for the
flux fragmentation instability in the homogeneous system for
t/t, = 8 (a), 20 (b), and 34 (c) at @ = 0.008, 7! = 150, and
the initial current in the Bean state, jo = 18 (white corresponds
to # > 1, and black corresponds to § = 0). Domain of integra-
tion: —150L, <y < 150L;, 0 < x < 600L,, periodic bound-
ary conditions in the x direction; no-flux 96/dy aty = *150L,
for the temperature and b = const for the magnetic field. Each
panel shows the upper half of the sample and one-third of the
total length: 0 < y < 150L;, 200L;, < x < 400L;,. The mag-
netization currents change direction on the bottom part of each
panel, i.e., for y = 0. Same for the system with periodic modu-
lation in J.(x, y) for 27w /k = 30L;, € = 0.5, ¢t = 6 (d), 16 (e),
28 (f), and j, = 20.

As follows from Figs. 2d—2f, spatial inhomogeneities in
J. can bring about new features of the hot spot propaga-
tion. The periodic modulation of J.(x,y) also gives rise
to additional side branching and preferential flux propaga-
tion along the nearest neighbor directions at angles +45°,
causing further interconnection of neighboring hot spot
branches. This effect is similar to that observed in super-
conducting films with periodic arrays of holes and mag-
netic dots [19]. For 7 < 1, the diffusion of magnetic flux
in the normal state occurs much faster than the heat diffu-
sion. Therefore, magnetic flux rapidly penetrates the hot
regions of the filamentary current structure in Fig. 2, form-
ing dendritic flux front patterns reminiscent of those ob-
served in magneto-optical experiments [10—12].

The flux fragmentation can be described as follows.
For 7 < 1, the electric field E becomes nearly potential,
V X E = (0, thus the magnetization currents tend to by-
pass the propagating hot resistive domain [20]. Thus, the
current density in the resistive domain decreases, forcing
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FIG. 3. Same dynamic temperature maps as in Fig. 2 for 7 =
1, @ = 0.006, j, = 18, and /1, = 8 (a), 20 (b), 34 (c).

the excess magnetization currents to flow along the domain
interface. The high interface currents cause strong local
enhancement of electric field and dissipation, widening the
resistive domain near its end and accelerating the propa-
gation velocity. At the same time, the temperature in the
center of the resistive domain decreases, facilitating recov-
ery of the superconducting state when the domain crosses
the central line, where magnetization currents change di-
rection. In this region the interface currents at the bottom
part of the domain are partly compensated by the oppo-
site magnetization currents, which strongly reduce joule
dissipation and stops hot spot propagation. As a result, a
triangular region at the tip of the resistive domain becomes
superconducting, and then the process repeats as described
above.

For 7 >> 1, the hot spot propagation occurs at the frozen
distribution of magnetic fields and currents, and the dy-
namics changes (as shown in Fig. 3). The heat pulse first
initiates stable propagation of a resistive hot spot, then it
splits into two parts which move apart and eventually dis-
appear. This behavior occurs if the energy of the heat pulse
Q is below the critical value Q.. For Q > Q., the heat
pulse creates a larger hot spot which then expands and
propagates over the entire sample [5].

The dendritic flux penetration can be regarded as a
microavalanche of a large bundle of vortices, which does
not trigger a global flux jump instability or thermal quench
of the whole sample. Such microavalanches cause only lo-
cal transient temperature spikes, leaving behind the frozen
flux dendrite structures shown in Fig. 4. Each avalanche
thus results in a partial flux penetration, which reduces
the total magnetic moment of a sample and manifests it-
self in steps on magnetization curves M(B). Notice that
microavalanches in increasing magnetic field may also
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FIG. 4. A typical “frozen” current configuration after com-
pletion of the fragmentation for 7~! = 600. The gray shades
change from black (J = 0) to white (maximum J). Full domain
of integration is shown. The black line in the middle is due to
reverse of direction of the magnetization current.

be initiated by surface defects (regions with lower J.),
which are sources of excess steady-state joule dissipa-
tion. Such common defects, which have been revealed
by magneto-optical imaging of HTS [21], can trigger both
global flux jumps [4] and local vortex microavalanches.
The microavalanches cause steps in M(B), as observed
on Nb films at low temperatures [9]. After many mi-
croavalanches, the critical state eventually turns into a
frozen “turbulent” current structure built of individual den-
dritic fragments, like that in Fig. 4.

The results of this work may capture the essen-
tial physics of dendritic flux instability observed on
YBa;CuzO7 [10], Nb [11], and MgB, [12] films, al-
though, for a more quantitative comparison, other factors
should also be taken into account. The experiments
[10—12] correspond to thin films in low perpendicular
magnetic fields, which require the account of the nonlocal
flux diffusion [3] and the geometrical barrier [22], whereas
our model describes a slab in high parallel magnetic fields.
Another intriguing result discovered in Ref. [10] is a su-
perfast flux propagation with the velocities exceeding the
speed of sound c. This also requires invoking additional
mechanisms, because the thermal velocities of hot spot
propagation v ~ J[kp/(T* — To)]"/2/C [5] is smaller
than ¢;. The superfast flux propagation might be due to
electron overheating, so that an equation similar to Eq. (1)
actually describes the electron temperature, higher than
the lattice temperature 7. The lattice heat capacity C in
the above estimate for v(J) is then replaced by a much
smaller electron heat capacity, which increases v(J) by
1-2 orders of magnitude. This situation may occur at low
T, if the time of the electron-phonon energy relaxation
becomes larger than the thermal time #;, [23].

We proposed a new mechanism of magnetic flux frag-
mentation in superconductors. The instability manifests
itself as a vortex microavalanche, accompanied by a tran-
sient local joule dissipation and eventually results in a
frozen multifilamentary structure of magnetization cur-
rents. These effects give rise to dendritic flux penetration
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into superconductors, partial flux jumps, and steps on mag-
netization curves.
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