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Destruction of Bulk Ordering by Surface Randomness
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We demonstrate that the arbitrarily weak quenched disorder on the surface of a system of continuous
symmetry destroys long-range order in the bulk, and, instead, quasi-long-range order emerges.
Correlation functions are calculated exactly for the two- and three-dimensional XY models with
surface randomness via the functional renormalization group. Even at strong quenched disorder the
three-dimensional XY model possesses topological order. We also determine roughness of a domain
wall in the presence of surface disorder.

DOI: 10.1103/PhysRevLett.89.227204 PACS numbers: 75.10.Nr, 05.50.+q, 64.60.Ak, 74.60.Ge
correlation functions obey a slow logarithmic depen-
dence of the distance.

Assuming that the random field h is Gaussian
and hh�q�h�p�i � ���p q� one finds the correlation
The arbitrarily weak quenched disorder in the bulk of a
system of continuous symmetry destroys long-range order
inherent to the pure system [1] provided that disorder
breaks not only the translational symmetry but also the
symmetry with respect to transformations of the order
parameter, as, e.g., random anisotropy in amorphous
magnets does. This fundamental fact governs all the
physics of condensed matter and results in a wealth of
observed static and dynamics behaviors of real solids.

In many cases noticeable disorder presents only at the
surface. Not surprisingly, surface randomness modifies
the critical behavior near the surface [2], yet the common
expectation is for the bulk properties to remain intact. In
this Letter we show that arbitrarily weak surface disorder
destroys long-range order in the bulk of a system of
continuous symmetry at the arbitrarily low temperature.

The predicted effect occurs in a rich variety of systems.
Examples include crystal ordering in solids grown on a
disordered substrate, liquid crystals interacting with an
inhomogeneous surface, superconducting vortices pinned
by surface impurities, etc. There are also many two-
dimensional systems with edge randomness, e.g., super-
conducting films with columnar defects in a part of the
film or films with a rough edge [3].

The reason as to why surface impurities, however
weak, break long-range bulk order is that the bulk con-
tributes little to the energy of long-wave Goldstone
modes: the surface random energy of long-wave excita-
tions turns out to be greater than the corresponding bulk
energy. As a result, the inhomogeneous state becomes
favorable energetically. Note that ordering survives in
the regions of the size less than the distance of these
regions from the surface. In other words, if the distance
between the two points is greater than their separation
from the surface, the order parameter is different in those
points. While long-range order breaks down, topological
order survives and quasi-long-range order emerges. This
means that the correlation length is infinite and that the
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An easy way to understand the main result of the Letter
is based on Imry-Ma arguments [1,4]. Let us consider a
region of size L near the surface and compare the energies
of ordered and disordered states of the region. If long-
range order is broken on the scales of the order of L the
loss in the bulk (elastic) energy is Ebulk � LD=L2, where
D is the space dimension. The energy gain from the
interaction with surface impurities scales as Esurface �
L�D�1�=2. If D < 3 then Esurface > Ebulk. Hence, the disor-
dered state is favorable at D < 3. On the other hand, long-
range order is favorable at D > 3. The case D � 3 is
marginal and requires more quantitative consideration.
We will see that in this case long-range order is absent
for the arbitrarily weak disorder similar to D < 3.

We begin with the analysis of the exactly solvable
Larkin model [1]. It is defined by the Hamiltonian

H �
J
2

Z
�r��2d2xdz�

Z
h�x���x; z � 0�d2x; (1)

where � is the order parameter, h is the random field, and
the z axis is perpendicular to the disordered surface. At
zero temperature we search for the energy minimum. To
find the field configuration ���x; z� at zero temperature we
calculate the variation of the Hamiltonian (1) and make
the Fourier transform with respect to the x coordinates:

J�q2
jj
� @2

z��
��qjj; z� � h�qjj���z�: (2)

Substituting the solution of this equation

���qjj; z� � ���qjj; 0� exp��jqjjjz� (3)

into Eq. (1) we get the energy

H� �
Z d2qjj

�2��2
	jqjjjj���qjj; 0�j2 � h�qjj�����qjj; 0�
:

(4)

From Eq. (4) we find �� � exp��jqjjjz�hqjj=�Jjqjjj�.
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function G�r1; r2� � h	��r1� ���r2�

2i. For example, if

z1 � z2 � �r1 � r2� then

G � �=��J2� ln�jx1 � x2j=z1�: (5)

If x1 � x2, z1 � z2 then G � ��=2�J2� ln�z2=z1�. Since
the correlation function is unlimited, there is no long-
range order. We will see that the same behavior is present
in more complicated systems too, e.g., in the 3D XY
model with surface disorder.

As the first nontrivial example we consider a domain
wall in a media with disordered surface [5]. The domain
wall is rough in the presence of bulk disorder [5].We show
that surface disorder also makes it rough. The shape of the
domain wall is described by the displacement of the wall
as a function of D� 1 coordinates y � ��x; z�, where x
and z are the coordinates in a plane perpendicular to
the surface, z being the direction perpendicular to
the surface. The Hamiltonian differs from (1) only
by the dependence of the random contribution on
�: in the case of the random-bond disorder [5] it is
a Gaussian �-correlated random variable V�x; ��,
hV�x1; �1�V�x2; �2�i � ��x1 � x2����1 ��2�. We will
demonstrate that the h��i correlation function exhibits
a power-law distance dependence:

h	��r1� ���r2�
2i � jr1 � r2j2� : (6)

Introducing the field ���qjj; z� as above and repeating
the derivation of Eq. (4) we get

H� �
Z dD�2qjj

�2��D�2

jqjjjj���qjj; 0�j2

2


Z

dD�2xV	x;���x; 0�
: (7)

After replica averaging over disorder we get the effective
replica Hamiltonian

HR �
Z dD�2qjj

�2��D�2

X
a

jqjjjj��
a�qjj; 0�j2

2T

�
Z

dD�2x
X
ab

R	��
a�x� ���

b�x�


2T2 ; (8)

where a and b are replica indices and R is the function
describing disorder. The problem can be studied with the
functional renormalization group (RG) following the line
of Ref. [6]. At each RG step we integrate out the momenta
from the interval 1=as < qjj < 1=a, where a is the ultra-
violet cutoff and s > 1, and make the rescaling qjj !
qjj=s, x ! sx, �� ! s���. The first term of Eq. (8)
depends on qjj nonanalytically and hence does not
renormalize [7]. Thus, the temperature obeys the RG
equation dT=d lnL � �3�D� 2��T and we find a
zero-temperature fixed point. Power counting shows that
the whole function R��� is a relevant operator near D � 4
in this fixed point. The RG equation for R can be derived
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exactly in the same way as in Ref. [6] and to the first order
in ! � 4�D has the same form as in Ref. [6],

dR���=d lnL � �!� 4��R���  ��R0���

 R00���2=2� R00���R00�� � 0�; (9)

where the factor S2=�2��2 � 1=2� is absorbed into R.
The solution of this equation can be read out of Ref. [6]
and gives us � � 0:2083! in the correlation function (6).
Using the result (3) for the displacement field � one gets
the same behavior h	��x1; z1� ���x2; z2�


2i � jx1 � x2j
2�

in the bulk as at the surface provided that jx1 � x2j >
z1 � z2. Thus, the domain wall is rough in three dimen-
sions in the presence of surface disorder.

Next we consider the XY model with surface random-
ness. It is described by the same Hamiltonian (8) as the
domain wall problem. However, due to the periodicity of
the XY model the function R��� has period 2�. One can
apply this model for the description of vortices in a
superconductor with disordered surface [8]. The field �
describes displacements of the vortices from the regular
positions in the Abrikosov lattice. Random potential
is associated with impurities which pin vortices at the
surface.

Because of the periodicity of the Hamiltonian there is
no renormalization of the order parameter, i.e., � � 0.
The RG equations have exactly the same structure as in
the domain wall problem in dimension D 1. Since
dimension 4 is the critical dimension in the domain
wall problem, the random XY model has the critical
dimension D � 3. Thus, we expect the logarithmic situ-
ation in three dimensions: the theory is asymptotically
free and R��� can be represented as R��;L� �
R����= lnL. The exact RG equation for R� has the same
structure as the one-loop RG equation (9) at ! � 1 and
� � 0. The analytical solution of this equation is known
[8,9] and gives the following exact result for the correla-
tion function:

h	��x1; z1� ���x2; z2�
2i �
2�2

9
ln lnjx1 � x2j

at jx1 � x2j > z1; z2. The possibility to obtain an exact
result makes the 3D XY model with surface disorder a
good candidate for a quantitative test of the functional
RG. Since the correlation function is unlimited at large
r1 � r2, long-range order is absent. However, the correla-
tion function varies slowly with the distance. Such
a situation can be described as super-quasi-long-range
order [9].

Our treatment of the XY model in terms of the elastic
Hamiltonian (8) is justified in the absence of topological
defects. Similar to Ref. [9] we do not expect that the
defects are relevant at weak disorder. At strong disorder,
dislocations also do not proliferate deep in the bulk.
Indeed, let us consider a dislocation of size L. The dis-
tance R of any of its points from the surface is less than
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the dislocation length L since otherwise the dislocation
would not interact with the surface and should be ener-
getically unfavorable. We estimate the energy gain asso-
ciated with the disorder as Edisorder �

����
�

p �������
LR

p
, where � is

the average square of the random field, and the bulk
energy loss as Ebulk � JL lnR. One sees that the bulk
loss is greater than the surface gain for large L even at
strong disorder

����
�

p
� J. Thus, proliferation of large

dislocation loops is unfavorable and the system renders
topological order.

In two dimensions the XY model has only quasi-long-
range order at low temperatures even in the absence
of disorder. Edge disorder modifies correlation functions
but does not destroy quasi-long-range order as we
show below.

A recent experimental realization of a related two-
dimensional system with edge randomness is a super-
conducting film with columnar defects in a part of it
[3]. Vortices pinned by defects create a random potential
near the boundary between the pure and impure parts of
the film. This potential affects the vortex lattice in the
pure part. An anisotropic film where vortices are free to
move only in one direction can be described by the XY
model with edge disorder [8].

One cannot use the 3� ! expansion in this problem
since no zero-temperature fixed point exists in two
dimensions: the scaling dimension of the temperature
�T � D� 2 becomes zero in two dimensions.
Physically this result is related to the fact that thermal
fluctuations have qualitatively the same effect on the
ordering in the system as impurities: both destroy long-
range order. Hence, we have to develop an RG procedure
directly in two dimensions at nonzero temperature.

Similar to the derivation of Eq. (8) we obtain the
following one-dimensional replica Hamiltonian for
the field �� at the edge (in the absence of vortices):

HR �
Z dqjj

2�

X
a

Jjqjjjj�
�
a�qjj; 0�

2j

2T

�
Z

dx
X
ab

X
k

�k cosk��
�
a ���

b�

T2 ; (10)

where k � nkmin, kmin being the smallest value of k
allowed by the symmetry, n an integer. Note that in this
expression �� is not a zero-temperature field configura-
tion in contrast to the previous problems. The field � in
the bulk of our 2D system includes two contributions: one
is related to �� via Eq. (3) and the other is a free
thermally fluctuating field.

We first neglect vortices and then check how they
change the behavior of the system. At T > Tc �
�J=k2min all the nonlinear terms in HR are irrelevant. At
high temperatures the correlation function is the same as
in the absence of disorder and has the form h	���x1� �
���x2�
2i � �2T=�J� lnjx1 � x2j. Below Tc the cosine
term with the minimal k becomes relevant.
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At kmin � 1 we get the following one-loop RG
equation:

d�1=T2

d lnL
�

�
1�

T
�J

�
�1

T2 �
4�2

1

�4J4
a; (11)

where a is the ultraviolet spacial cutoff. The fixed point
solution of Eq. (11) is ��

1 � �1� T=�J��2J2=4a. This
result is valid, if the dimensionless combination �1a=J2

is small.
To obtain the correlation function we add an infinitesi-

mal contribution (j�a�1
q�kj

2=T to the replica Hamiltonian
(10). The correlation function hj�1

kj
2i � �TdZ=d(,

where Z is the replica partition function. To find the
contribution to Z proportional to (, we calculate
�-independent corrections to HR (10) generated at each
RG step. No ( dependence is present in the first order
in �1. Hence, we have to go to the second order in �1.
This gives us the following result:

h	���x; z � 0� ����y; z � 0�
2i

�
2T
�J

ln
jx� yj

a


�2

8

�
1�

T
�J

�
2
ln
jx� yj

a
; (12)

where the first term represents the effect of thermal
fluctuations and the second one represents the effect of
disorder. At z > 0 the correlation function has the same
structure (12), if jx� yj is large enough. At kmin > 1 the
result can be obtained from Eq. (12) by the transforma-
tion �� ! k��, T ! k2T.

The correlation function (12) is obtained in the vortex-
free model. In the absence of disorder, the Berezinsky-
Kosterlitz-Thouless (BKT) transition occurs at TBKT �
�J=2. This temperature is lower than Tc � �J=k2min in
the random-field case kmin � 1. Thus, vortices lead to a
breakdown of our result in the presence of the random-
field disorder. What is the effect of vortices at kmin > 1?
To answer this question we compare the bulk elastic
energy of a vortex in the system of size L and the energy
of its interaction with the surface. The elastic energy
Ebulk � J lnL. An estimation of the disorder energy must
take into account the renormalization of the disorder
strength at large scales. The fact that we obtain a fixed
point �� for � means that the effective disorder strength
at scale l is of order ��a=l (rescaling at the RG steps). The
average square of the disorder energy scales hence as
E2
dis �

R
L dl��=l� �� lnL. There are �L2 possible

positions of the vortex. Assuming a Gaussian distribu-
tion for Edis we get the following probability of such a
disorder realization that the creation of a vortex is favor-
able: p� L2 exp��J2 ln2L=�� lnL�. One sees that p � 1,
if J2 � ��. This justifies our vortex-free approximation
and the result (12) at the vicinity of the critical tempera-
ture Tc as the effective disorder strength �� is small in
that region.

What happens if both surface and bulk disorder is
present? This question can be easily answered in the
227204-3
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framework of the Larkin model [1]. Let the average
square of the bulk random field be �bulk. The correlation
function in the presence of bulk disorder only [1]
is h	��x1� ���x2�
2i � �bulkjx1 � x2j=J2. This should
be compared with the correlation function in the
presence of surface disorder only (5). One can see that
the surface random field is the main source of order
parameter fluctuations at scales r � jx1 � x2j< Rc �
�=�bulk ln��=�bulka�. At scales r > Rc bulk disorder
dominates.

In conclusion, we demonstrate that even arbitrarily
weak surface disorder destroys long-range order in sys-
tems of continuous symmetry at any temperature.
Topological order is not destroyed and quasi-long-range
or super-quasi-long-range order emerges. There are two
quasi-long-range ordered phases in the random two-
dimensional XY model. The results of the Letter can be
relevant for the characterization of disordered surfaces
because the correlation functions of the system in contact
with the surface contain information about the surface
disorder.

We thank P. H. Kes and V. L. Pokrovsky for useful
discussions. This work was supported by the U.S. DOE
Office of Science under Contract No. W31-109-ENG-38.
227204-4
D. E. F. acknowledges support from RFBR Grant No.
00-02-17763.
[1] A. I. Larkin, Sov. Phys. JETP 31, 784 (1970).
[2] A. Hanke and M. Kardar, Phys. Rev. Lett. 86, 4596

(2001).
[3] H. Pastorzia and P. H. Kes, Phys. Rev. Lett. 75, 3525

(1995); R. Besseling, T. Drose, V. M. Vinokur, and P. H.
Kes (unpublished); N. Kokubo, R. Besseling, V. M.
Vinokur, and P. H. Kes (unpublished); R. Besseling,
Ph.D. thesis, Leiden University, 2001; M.V.
Marchevsky, Ph.D. thesis, Leiden University, 1997.

[4] Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975).
[5] M. Mezard and G. Parisi, J. Phys. I (France) 1, 809

(1991).
[6] D. S. Fisher, Phys. Rev. Lett. 56, 1964 (1986); L. Balents

and D. S. Fisher, Phys. Rev. B 48, 5949 (1993).
[7] J. Zinn-Justin, Quantum Field Theory and Critical

Phenomena (Oxford University Press, Oxford, 1993).
[8] T. Nattermann and S. Scheidl, Adv. Phys. 49, 607 (2000);

T. Giamrachi and P. Le Doussal, in Spin Glasses and
Random Fields, edited by A. P. Young (World Scientific,
Singapore, 1998), p. 321; e-print cond-mat/9705096.

[9] D. E. Feldman, Int. J. Mod. Phys. B 15, 2945 (2001).
227204-4


