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Interband Phase Modes and Nonequilibrium Soliton Structures
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We predict a new dynamic state in current-carrying superconductors with a multicomponent order
parameter. If the current density J exceeds a critical value Jt, an interband breakdown caused by charge
imbalance of nonequilibrium quasiparticles occurs. For J > Jt, the electric field penetrating from
current leads gives rise to various static and dynamic soliton phase textures, and voltage oscillations
similar to the nonstationary Josephson effect. We propose experiments to observe these effects which
would probe the multicomponent nature of the superconducting order parameter.
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FIG. 1. Geometries in which the interband phase breakdown
could occur. Here N labels normal electrodes, gray domains
show phase solitons moving along thin arrows, and block
arrows indicate current directions. Static phase textures form
in microbridges (a) and point contacts (b), while in the
2���@t � 2ci’=�0� � � ��F=� �
�: (1)

4-terminal geometry (c) the solitons and antisolitons continu-
ously annihilate in the center.
There are experimental and theoretical evidences
that several superconductors, including MgB2 [1,2],
NbSe2 [3], the heavy-fermion UPt3 [4], and organic
�TMTSF�2X [5] and �-BEDT [6], as well as the superfluid
3He-A [7] may have a multicomponent order parameter  
with internal degrees of freedom [7,8]. For two weakly
coupled s-wave order parameters  1 � �1ei�1 and  2 �
�2ei�2 on different disconnected parts of the Fermi sur-
face (as in MgB2), the internal degree of freedom is the
interband phase difference ��r; t� � �1–�2. In this case,
in addition to the phase-locked states (� � 0; ), peculiar
phase textures ��r; t� can occur. Soft modes associated
with fluctuations of ��r; t� are nearly decoupled from gap
fluctuations and behave like the Anderson plasmons in
Josephson junctions [7]. These modes may manifest
themselves as additional resonances in the ac Josephson
effect [9], or static 2 kinks in ��x� [10].

In this Letter, we show that the interband phase mode
does not contribute to the static magnetic response, but
becomes crucial for nonequilibrium current states in
which the charge imbalance at normal leads results in
phase slip structures ��r; t� propagating into a supercon-
ductor (Fig. 1). We predict a new dynamic state above the
critical current density J > Jt which marks the onset of
the current-induced breakdown of the superconducting
state. For the multicomponent  , such breakdown is a
two-stage process. First, at J � Jt, an interband break-
down occurs, resulting in spontaneous dislocationlike
textures in ��x; t�, and ac voltage oscillations at fixed
gaps �1;2. The second stage corresponds to higher J close
to the depairing current density Jd > Jt, at which both
gaps �1;2 get suppressed by the pair breaking effects (for
weak interband coupling, Jt � Jd).

We derive the equations of motion for � and the electric
field E near the critical temperature T � Tc, using the
time-dependent Ginzburg-Landau (TDGL) equations
[11] generalized to a two-gap superconductor:
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Here � runs from 1 to 2, ’ is the electric potential, �0 is
the flux quantum, c is the speed of light, �� are damping
constants, and the free energy F �

R
d3r�f1 � f2 � fm �

fint� contains the magnetic part fm � jr�Aj2=8�, the
GL intraband part f�, and the interband interaction fint
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��
2

j �j4 � g�

�������
�
r�

2i
�0

A
�
 �

�������
2
;

(2)

fint � �� 1 �
2 �  �

1 2� � 2��1�2 cos�; (3)

where A is the vector potential, �, �, and g are the GL
expansion coefficients, � is the interband coupling
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constant, and the asterisk means complex conjugation.
The qualitative results of this work remain valid for any
periodic dependence fint���, so the simplest form of fint
disregarding gradient terms [12] is taken. We consider
weak interband coupling �� �1;2 [13,14], which is
likely the case in MgB2 [1,2].

The imaginary part of Eq. (1) gives
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r��2
�Q�����1�2sin�;

(4)

r�r�A��4=c�� E�Js�; (5)

where ���1��2, Q��A��0r��=2, the plus sign
corresponds to ��1,  E is the Ohmic current density
proportional to the electric field E��r’� _AA=c and the
normal conductivity  , and the supercurrent

Js��82c�g1�
2
1Q1�g2�

2
2Q2�=�

2
0 (6)

is a sum of independent intraband contributions.
The usual boundary conditions, �i@n�2An=�0� ��
i �=l�, between a superconductor and a normal metal
ensure zero perpendicular Js for both  1 and  2.

If �� �1;2, the gaps �� are decoupled from �, so
static equations (4) and (5) yield the London equation for
H, and the sine-Gordon equation L2

�r
2� � sgn��� sin�

for � [10]. The latter has a single-soliton or staircase
solutions similar to the vortex solutions in long
Josephson contacts [15]. However, the physics of these �
solitons is different from that of the Josephson vortices.
Indeed, the Josephson vortices reduce the Gibbs free
energy in a magnetic field H > Hc1 because they carry
the quantized magnetic flux and are driven by the Lorentz
force of supercurrents. By contrast, � solitons do not
carry magnetic flux and thus do not interact with super-
currents, but can be driven by a nonequilibrium charge
density injected from normal electrodes. As a result,
equilibrium nonuniform solutions ��x� are energetically
unfavorable as compared to the phase-locked state � � 0
(for � < 0) or  (for � > 0), however various dynamic or
quenched phase textures can be generated during current-
induced interband breakdown.

To describe the evolution of these phase textures, we
obtain the equation of motion for �, expressing Q1;2 in
Eqs. (4) in terms of J and r�, and then subtracting the
equations for �1 and �2 from each other. This yields

&� _�� � L2
�r

2� sin�� ��divJs; (7)

where the relaxation time &�, the decay length L�, and the
charge coupling parameter �� are given by

&� � �1�2�1�2=j�j��1�
2
1 � �2�

2
2�; (8)

L2
� � g1g2�1�2=j�j�g1�

2
1 � g2�

2
2�; (9)
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The signs in Eq. (7) correspond to the sign of �. As
follows from Eq. (7), the � mode does not contribute to
the static magnetic response, since divJs � 0 for any
distribution of bulk supercurrents. However, the � mode
interacts with a nonuniform electric field due to non-
equilibrium charge imbalance, divJs � � divE near
the normal leads. It is the difference in the injected intra-
band charge densities, which provides the driving term in
Eq. (8) because of the band asymmetry, �1g2 � �2g1.

To obtain the equation for E, we add Eqs. (4) for �1 and
�2, then take the gradient of the sum and express Q1;2 in
terms of J and r�. This yields

&e _EE �E� L2
egrad divE� �er _�� � &e _JJ= ; (11)

where J�t� is the driving current density, Le is the electric
field penetration depth, &e is the charging time constant,
and the coupling term �er _�� describes an electric field
caused by moving phase textures:

&e �  �2
0=8

2c2�g1�2
1 � g2�2

2�; (12)

L2
e �  �2

0=8
2c2��1�

2
1 � �2�

2
2�; (13)

�e � 2j�j�1�2��: (14)

Equations (7) and (11) describe nonlinear electrody-
namics of a two-gap superconductor at fixed �1;2. We use
these equations to calculate ��x; t� in a current-carrying
microbridge of length 2a [Fig. 1(a)]. Below the critical
current density Jt the bridge is in a phase-locked state,
except localized phase kinks at the edges (Fig. 2). For
J > Jt, the interband breakdown causes penetration of
phase textures in the bulk, as shown in Figs. 3 and 4.
Here Jt can be calculated from the static Eq. (7) (� < 0):

L2
��

00 � sin�� ��J0s � 0; (15)

where �0��a� � Js��a� � 0, �0�0� � 0, and the prime
denotes differentiation over x.

We first obtain Jt for a long (a� L� � Le) bridge
where J0s�x� is essential only in a narrow region a� Le <
x < a of the electric field penetration. Then the static
equation ��J � 2L�j sin��a�=2j, for the maximum value
of ��a� at the edge has solutions only if J < Jt, where

Jt � 2L�=��: (16)

In the opposite limit L� � Le, the static solutions E�x� �
E0 cosh�x=Le�= cosh�a=Le�, sin��x� � � ��E

0�x�, exist
only if  ��E0�a�< 1 or J < Jt. Here E0 is the electric
field in the normal lead, and

Jt � Le=�� tanh�a=Le�: (17)

For �1 � �2, g1 � g2, �1 � �2, and �1 � �2, Eq. (16)
gives Jt � ��g2=�g1�1=2Jd � Jd. The ratio g2=g1 can be
047004-2



FIG. 2 (color online). Formation of a static phase soliton in
��x� near the bridge edge after the current density was in-
stantaneously turned on from 0 to J � 0:99Jt at t � 0. Times
and distances from the center �x � 0� are taken in the units of
&� and a, respectively, Le � a=10, L� � 0:1Le.
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further reduced by nonmagnetic impurities, for example,
by Mg vacancies in MgB2, which mostly cause scattering
in the  band (band 2 in our notations).

For J > Jt, the charge-induced interband breakdown
gives rise to striking dynamic states in which � solitons
periodically appear near the current leads and then
propagate into the bulk. We solved Eqs. (7)–(14) numeri-
cally in the limit �e�� � min�&�L2

e; &eL2
�� of weak cou-

pling between � and E, for which divE in Eq. (7) is
mostly determined by the static E�x�, while the last
term in Eq. (14) gives a small ac correction to E of the
second order in �e [16]. Figure 2 shows the evolution of
��x; t� near the current lead in a microbridge [Fig. 1(a)] as
FIG. 3 (color online). Dynamics of formation of a static
soliton chain in the bridge of length 2a after J�t� was instanta-
neously turned on from 0 to 1:025Jt at t � 0. Only the right
half �0< x< a� is shown, and the rest is the same as in Fig. 2.

047004-3
J was instantaneously turned on from zero to a value
below Jt. Such current step eventually produces a stable
distribution ��x� localized near the edge, while the bulk
of the bridge remains in the phase-locked state. For
J < Jt, this behavior is characteristic of all geometries
in Fig. 1, for which the dynamics of ��x; t� for J > Jt can
be very different.

We start with the bridge [Fig. 1(a)], for which current
flow does not change direction, so E�x; t� and ��x; t� are
even and odd functions of x, respectively, E��a; t� � E0,
E0�0; t� � 0, ��0� � 0, �0��a; t� � 0, and supercurrents
in both bands vanish at the normal electrodes, where
J �  E. In this case � solitons first appear at the bridge
edges, but for J > Jt, they are pushed to the bulk by the
strong gradient of E�x�. Then the next soliton forms near
the edge and the process repeats periodically, resulting in
the propagation of two soliton chains from the opposite
current leads as shown in Fig. 3. After the first two
solitons in the chains collide in the center they stop,
while new solitons keep entering the bridge. During
this soliton pileup, the mean slope "��0�t� increases, reach-
ing a critical value "��0c ’ ��J=L2

� (for J � Jt) at which the
soliton generation at the edges stops and a static texture
forms. The excess dc resistance of the bridge for J > Jt
remains the same as for J < Jt, however, during the
soliton penetration, t < tc � &�a "��

0
c=2, a transient resis-

tance and voltage oscillations are generated. A similar
behavior occurs at the point contact [Fig. 1(b)], in which
concentric soliton shells propagate into the bulk.

A very different kind of soliton dynamics occurs in the
4-terminal geometry [Fig. 1(c)], for which currents flow
in the opposite directions, making 90� turns around the
central stagnation point �x � 0� where r� � 0 by sym-
metry. In this case E�x� is an odd function of x so the
driving charge density divE does not change sign along
FIG. 4 (color online). Moving soliton shuttle along the right
half of the horizontal leg �0< x< a� in the 4-terminal geom-
etry shown in Fig. 1(c). J�t� was instantaneously turned on
from 0 to 1:012Jt at t � 0, and the rest is the same as in Fig. 2.
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the horizontal leg of the cross in Fig. 1(c); the total charge
along the horizontal leg is compensated by the opposite
charge distributed along the vertical leg. The asymmetry
of E�x� causes generation of solitons and antisolitons with
� shifted by  at the opposite current leads, which then
move toward the center of the cross where they annihi-
late, as shown in Fig. 4. Such continuous soliton motion
takes place if the width wy of the vertical leg is greater
than the width wx of the horizontal leg, so that the current
density in the horizontal leg I=wx exceeds Jt, while the
vertical leg remains in the phase-locked state I=wy < Jt,
where I is the total sheet current. If the lengths of the
strips are much greater than Le, the soliton-antisoliton
annihilation is unaffected by the charge imbalance near
the current leads.

Two different dynamic states represented in Figs. 3 and
4 have clear analogs in the theory of long Josephson
contacts. Namely the transient soliton penetration in the
bridge in Fig. 3 is analogous to vortex penetration in a
long Josephson junction in a magnetic field H > Hc1,
since in both cases the driving terms (charge and mag-
netization current densities, respectively) are asymmetric
functions of x. By contrast, the soliton dynamics in the
4-terminal geometry is analogous to the steady-state
annihilation of self-field Josephson vortices and antivor-
tices in a long Josephson junction with a transport current.
Because the total charge along the horizontal strip in
Fig. 1(c) is nonzero, all � solitons are pushed in the
same direction (antisolitons move in the opposite direc-
tion), similar to the flux flow of the Josephson vortices
driven by the Lorentz force of the transport current.

For J > Jt, the soliton shuttle in Fig. 4 results in
voltage oscillations on the bridge. For Le � L�, the ac
voltage V!�t� �

P
1
m�1 Vm cos�m!t�  m� between the

points x1 � a=2 and x2 � a can be estimated by integrat-
ing Eq. (11): &e _VV! � V! � �e� _���x1; t� � _���x2; t��. The
oscillating part of _��s � _���x2; t� � _���x1; t� obeys the
equation &� _��s � sin�s � �, for which &� _��s �
2

���������������
�2 � 1

p P
1
m�1���

���������������
�2 � 1

p
�m cosm!t, � � J=Jt, and

! � &�1
�

���������������
�2 � 1

p
[17]. Hence, tan m � m!&�, and

Vm ’
2�e
&�

���������������
�2 � 1

q
���

���������������
�2 � 1

p
�m���������������������������

1� �m!&e�
2

p : (18)

Here Vm��� is maximum at � � �m, where �m ’
1� 0:5�&�=m&e�2=3, and Vm��m� ’ 2�e=m&e for &� �
&e. The effects considered in this work are due to inter-
band tunneling [7], so the generation of � solitons does
not require any weak links. Unlike the Josephson vortex,
a single � soliton moving with a constant velocity v does
not carry magnetic flux, thus it does not cause any total
dc voltage V, as follows from Eq. (11) integrated over x:
V � �ev

R
1
�1 �

00dx � 0. However, the phase slippage
near the normal lead increases the electric field penetra-
tion depth ~LLe. For J � Jt, substitution of &� _�� �
���E

0= from Eq. (8) into Eq. (11) yields ~LL2
e � L2

e �
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�e��= &�. This effect increases the excess dc sheet re-
sistance of the strip by Rex � �~LLe � Le�= w.

The soft interband � mode could also manifest itself in
rf absorption at frequencies below the small gap �2,
depending on the polarization of the rf electric field E.
If E�t� is parallel to the sample surface, then divE � 0, so
the phase mode is not excited by the rf field. However, the
�mode contributes to the rf impedance if the rf field has a
component perpendicular to the sample surface.

In conclusion, we predict an interband breakdown in-
duced by nonequilibrium quasiparticles in two-gap super-
conductors. It results in spontaneous generation of static
and/or dynamic phase textures, causing voltage oscilla-
tions and excess dc resistance. The observation of these
effects would unambiguously indicate the multicompo-
nent nature of the superconducting order parameter.
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