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Effective Hamiltonian for Ga1�xMnxAs in the Dilute Limit
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We derive an effective Hamiltonian for Ga1�xMnxAs in the dilute limit, where Ga1�xMnxAs can be
described in terms of spin F � 3=2 polarons hopping between the Mn sites and coupled to the local Mn
spins.We determine the parameters of our model from microscopic calculations. Our approach treats the
large Coulomb interaction in a nonperturbative way, captures the effects of spin-orbit coupling and
disorder, and is appropriate for other p-doped magnetic semiconductors.
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large Coulomb interaction nonperturbatively, and incor- porated in Eq. (2). In the metallic phase it is presumably a
Since their discovery [1], dilute III–V magnetic semi-
conductors with high Curie temperatures have become
the subject of very intense research [2]. Because the
magnetic ions (usually Mn) responsible for the ferromag-
netism are dissolved into the semiconductor itself, these
materials could provide a unique opportunity to integrate
ferromagnetic elements into larger, nonmagnetic, semi-
conducting devices.

In this Letter we focus on one of the most studied
magnetic semiconductors, Ga1�xMnxAs, though most of
our calculations carry over to other p-doped III–V mag-
netic semiconductors [3]. In Ga1�xMnxAs substitutional
Mn2� play a fundamental role: They provide local spin
S � 5=2moments, and they dope holes into the lattice [4].
Since the Mn2� ions are negatively charged compared to
Ga3�, in the very dilute limit they bind these holes,
forming an acceptor level with a binding energy Eb �
112 meV [4]. As the Mn concentration increases, these
acceptor states start to overlap and form an impurity
band, which for even larger Mn concentrations merges
with the valence band. Though the actual concentration at
which the impurity band disappears is not known, accord-
ing to optical conductivity measurements [5], this impu-
rity band seems to persist at least up to nominal Mn
concentrations of about x � 0:05. Angle resolved photo-
emission spectroscopy (ARPES) data [6,7] and the fact
that even ‘‘metallic’’ samples feature a resistivity upturn
at low temperature [8] also support the assertion that for
smaller concentrations (and maybe even for relatively
large nominal concentrations) one may be able to describe
Ga1�xMnxAs in terms of an impurity band [9].

In Ga1�xMnxAs the Coulomb potential created by the
Mn ions is by far the largest energy scale in the problem
[10], but spin-orbit coupling in the hole band is also quite
large compared to the exchange coupling between the
holes and the Mn spins [4]. Fortunately, the large
Coulomb potential of the Mn ion can be handled non-
perturbatively. We construct a many-body Hamiltonian
in this limit that captures spin-orbit effects, treats the
0031-9007=03=91(9)=097202(4)$20.00 
porates the exchange coupling between the local moments
and the holes.

The physics of the isolatedMn2� � hole system is well
understood [4]: In the absence of the Mn2� core spin, the
ground state of the bound hole at the acceptor level is
fourfold degenerate and well described in terms of a F �
3=2 spin. For most purposes, we can restrict ourselves to
this fourfold degenerate F � 3=2 acceptor level in the
dilute limit. As also evidenced by infrared spectroscopy
[4], the effect of the S � 5=2 Mn core spin is well de-
scribed by a simple exchange Hamiltonian [2]:

Hexch � G ~SS � ~FF; (1)

with G � 5 meV [4].
The presence of other Mn sites has three important

effects on the F � 3=2 acceptor state at any particular
Mn site. (i) The Coulomb potential of the neighboring
Mn2� ions will induce a random shift E of the fourfold
degenerate states. (ii) Because of the large spin-orbit
coupling in GaAs, the neighboring atoms will also gen-
erate an anisotropy K and split the fourfold degeneracy of
the F � 3=2 state into two doubly degenerate states.
(iii) Finally, the presence of the neighboring ions will
allow these F � 3=2 spin objects to hop between the Mn
sites. However, this hopping t will not conserve the spin F
because of the large spin-orbit coupling. Thus, in the
dilute limit Ga1�xMnxAs should be described by the
following simple Hamiltonian:

H �
X
�i;j�

cyi;�t
��
ij cj;� �

X
i

cyi;� �K��
i � Ei ���� ci;�

�G
X
i;�;�

~SSi � �c
y
i;�
~FF��ci;��; (2)

where cyi;� creates a hole at the acceptor level
jF � 3=2; Fz � �i at position i. As is clear from the
arguments above, Eq. (2) is very general and appropriate
for describing other p-doped III–V and II–IV semicon-
ductors as well [3]. Hole-hole interactions can be incor-
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good approximation to include only an on-site repulsion
(discussed later) that eliminates double occupancy of the
acceptor levels. In the localized phase, however, one may
have to consider long-ranged hole-hole interactions.

To estimate the various parameters in Eq. (2), we
studied the structure of the single impurity (Mn) and
two-impurity (Mn2) bound hole states using the so-called
spherical approximation [11]. The top of the valence band
inGa1�xMnxAs can be described in terms of spin j � 3=2
holes [12], whose spin couples strongly to their momenta.
In the spherical approximation the motion of the holes in
the Coulomb potential of an Mn ion is described by [11]

H0 �
�
2m

�p2 ��
X
�;�

J��p��� �
e2

� r
� Vcc�r�; (3)

where � � 7:65 is a mass renormalization parameter,m is
the free electron mass, � � 0:77 is the strength of the
spherical spin-orbit coupling in the j � 3=2 band [11],
� � 10 is the dielectric constant of GaAs, and Vcc is the
so-called central cell correction [13]. The spin-orbit term
in Eq. (3) couples the momentum tensor of the holes
p�� � p�p� � ��� p2=3 to their quadrupolar momen-
tum, J�� � �j�j� � j�j��=2� ��� j�j� 1�=3.

The bound states of H0 (without the central cell cor-
rection) have been studied in the seminal paper [11].
Because of the spherical symmetry, the total momentum,
~FF � ~LL� ~jj, is a conserved quantity, where ~LL is the orbital

angular momentum. The ground state of H0 is a fourfold
degenerate F � 3=2 multiplet that contains a substantial
d-wave contribution for GaAs due to the strong spin-orbit
coupling. In Fig. 1 we illustrate the importance of this
d-wave component by presenting the spatial dependence
of the direction of hole polarization, ~jj�r�, for the state
jF � 3=2; Fz � 3=2i which we calculated directly from
the Baldereschi-Lipari wave functions with the central
cell correction.
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FIG. 1. Polarization direction of a bound hole in the state
jF � 3=2; Fz � 3=2i in Ga1�xMnxAs around a Mn ion (dark
arrow pointing downwards represents the Mn S � 5=2 spin).
Only the direction of the polarization is indicated. The magni-
tude falls off on a scale �10 �A.
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Having computed the single Mn hole states, we carried
out a variational calculation to construct the molecular
orbitals for a pair of Mn ions [3,14]. Since the exchange
interaction with the Mn core spins is much smaller than
the binding energy of the holes, we neglected the effect of
G on the their wave functions in these calculations. For
the case where both the Mn-Mn bond and the quantiza-
tion axis of F are parallel to the z axis, Fz is conserved
and the spectrum of the lowest lying states of the mole-
cule can be fully characterized by:

Heff
Mn-Mn �

X
�

t��R��c
y
1;�c2;� � H:c:� (4)

�
X
i�1;2
�

�
K�R�

�
�2 �

5

4

�
�E�R�

�
cyi;�ci;�: (5)

By time reversal symmetry, t3=2 � t�3=2 and t1=2 � t�1=2.
All parameters depend only on the distance R between the
two Mn sites (see Fig. 2). The most obvious effect of the
spin-orbit coupling is that the hoppings t3=2 and t1=2
substantially differ from each other; holes that have their
spin aligned with the Mn-Mn bond are more mobile. As
indicated by the arrow, at the typical Mn-Mn distance for
x � 0:01, K and t1=2 can be entirely neglected compared
to E and t3=2. Therefore, in many cases it is enough to
keep only the latter two terms in the effective
Hamiltonian.

Having determined the effective Hamiltonian for a
pair of Mn ions, we can use it to estimate the parame-
ters in Eq. (2). Rotating the z axis along the bond direc-
tion ~nnij connecting sites i and j, we obtain tij �
D� ~nnij�t̂t�Rij�Dy� ~nnij�, Ki �

1
2

P
j�iK�Rij��� ~nnij � ~FF�

2 � 5
4,

and Ei �
1
2

P
j�iE�Rij�. Here D� ~nnij� is a spin 3=2 rota-

tion matrix, t̂t�R� denotes the diagonal matrix
diag�t3=2�R�; t1=2�R�; t1=2�R�; t3=2�R��, and Rij denotes the
distance between sites i and j.
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FIG. 2 (color online). Parameters of the two-impurity
Hamiltonian Eq. (4) obtained from the variational study of
two Mn ions. The arrow indicates the typical Mn-Mn distance,
dtyp, for x � 0:01 Mn concentration.
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Thus far we have neglected the interaction between
holes. In the localized phase, however, this interaction
may play an important role. In general, the Coulomb in-
teraction between holes on different Mn sites has a very
complicated form [3], though for large separations it sim-
plifies considerably. Fortunately, the dominant interaction
is the on-site hole-hole interaction. Within the spherical
approximation this interaction can be expressed as

Hint �
UN

2

X
i

:N̂N2i :�
UF

2

X
i

: ~̂FF~FF
2
i :; (6)

where N̂Ni �
P
�c

y
i;�ci;�, ~̂FF~FFi �

P
�;�c

y
i;�
~FF��ci;�, and : � � � :

denotes normal ordering. We estimated UN and UF in
Eq. (6) by evaluating exchange integrals: UN � 2600 K
and UF � �51 K.

Equations (2) and (6) , together with the microscopic
parameters of Fig. 2, constitute our central results. They
provide a well controlled theoretical framework that cap-
tures the most important aspects of dilute magnetic semi-
conductors such as the localization phase transition,
random anisotropy, disorder effects, and frustrated ferro-
magnetism. Postponing much of our detailed analysis to a
longer publication [3], here we demonstrate the power of
this model on only a few examples.

To obtain a better understanding of the model we first
computed the ground state of four Mn atoms at a separa-
tion of 15 �A due to the interaction mediated by a single
hole on the cluster. We treated the Mn spins classically
and used the simple mean field approximation of Ref. [9].
We considered only configurations where the Mn ions
were positioned on a slightly distorted tetrahedron with
three edges of length a � 15 �A and three edges of length
b (see Fig. 3). In all cases, in the ground state, the Mn
spins are relatively collinear apart from a slight tilt of
5–10

�
. However, the spatial position of the Mn ions gen-

erates a strong anisotropy. Thus, the energy depends
strongly on the directional orientation of the net spin
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FIG. 3 (color online). Anisotropy induced by the distortion of
a regular Mn tetrahedron in the presence of a single hole. The
Mn-Mn distances are a � 15 �A and b � 15 �A, b � 16:5 �A, and
b � 18 �A, respectively. The distortion generated anisotropy
can be almost 2 orders of magnitude larger than the undistorted
anisotropy, which is of order 1 K=Mn.
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relative to the underlying lattice. To demonstrate this we
calculated the ground state energy as a function of the Mn
spin direction (assuming full alignment). For a perfectly
regular tetrahedron this anisotropy is rather small, less
than 0:5 K=Mn. However, the anisotropy increases with
the ratio b=a, and for b=a � 1:2 it can be as large as
20 K=Mn. In other words, random positions of the Mn
ions induce a random anisotropy term that, depending on
the disorder, is much larger than the bulk anisotropy,
which is of the order of 1 K=Mn. Thus disorder and
spin-orbit coupling together can induce a large random
anisotropy energy comparable to TC. These findings are in
qualitative agreement with earlier results obtained in the
metallic limit [15].

Finally, we discuss some of the results obtained for a
Ga1�xMnxAs of linear sizes L � 10alat and L � 13alat
(with alat � 5:65 �A, the size of the conventional unit cell)
and active Mn concentration xactive � 0:01, using the
above-described mean field techniques at zero tempera-
ture. In the calculations presented below, we have not
included the effects of Eq. (6). [This is partially justified
post facto by Fig. 4 which shows that the states at the
Fermi energy are delocalized.] We emphasize that xactive
can be substantially less then the nominal Mn concen-
tration, x, which also includes inactive Mn sites [16], and
therefore these calculations may be relevant even for
systems with larger nominal Mn concentration. The con-
centration of holes is also reduced compared to x due to
strong compensation effects; we assumed that the number
of holes is reduced by a factor of f � 0:3 relative to the
number of Mn.
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FIG. 4 (color online). Top: Computed average hole density of
states per elementary cell for ten L � 10a samples with x �
0:01 and f � 0:3. We also show the density of states of the
valence band (dashed line). The Fermi energy is � �6500 K.
Bottom: The participation ratio for L � 10alat and L � 13alat.
States in the impurity band tails are localized while states in
the middle are delocalized; states in the side tail above zero
energy likely mix with the valence band states and are delo-
calized in reality.
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To take into account correlations [10] induced between
Mn ions during the experimental growth process, we
introduced a screened Coulomb repulsion between the
Mn ions and let them relax using T � 0 Monte Carlo
simulations. For long times the Mn ions form a regular
bcc lattice with some point defects. The data we present
here are for intermediate times, where there is still ap-
preciable disorder in the system.

Once we fixed the Mn positions in a given instance, we
solved the mean field equations derived from (2) self-
consistently [9]. We used periodic boundary conditions
and implemented a short distance cutoff in the hopping
parameters of Eq. (2) which corresponds to about eight
neighbors for each Mn. The use of this cut off is justified
by the observation that our molecular orbital calculations
are only appropriate for ‘‘nearest neighbor’’ ion pairs
and, in reality, holes cannot hop directly over the first
‘‘shell’’ of ions.We started from a configuration with fully
aligned classical Mn spins, ~$$i � ~SS=S, and then let the
system relax to the nearest metastable state. Similar to
the metallic case [15], we find a ferromagnetic state with
a largely reduced magnetization, jh ~$$iij � 0:4 for L �
10alat. We find that this reduction is largely due to spin-
orbit coupling, and that the cosine of the angle ) between
the spins and the ground state magnetization has a broad
distribution similar to the metallic case [15].

The density of states is shown in Fig. 4. The half-width
of the impurity band is about 0.2 eVat this density, which
slightly overlaps with the valence band density of states.
However, comparison with the valence hole density of
states suggests that at this concentration a well-formed
impurity band may still be present, and it might persist to
higher concentrations. Indeed, this scenario seems to be
supported by many experiments [5,6].

The impurity band has a tail of localized states that
reaches inside the band gap. These states can be identified
for various system sizes. [See Fig. 4 wherein the partici-
pation ratio (PR), PR � �

P
i�
P
�j i�j

2�2�1, grows with
system size for delocalized states while the PR remains
O(1) in the thermodynamic limit for localized states].

This tail gradually disappears when we introduce cor-
relations between the Mn ions which tend to form regular
structures [3]. In agreement with ARPES data [6], we
find that the chemical potential lies deep (� 0:5 eV) in-
side the gap. From the PR data, it appears that the chemi-
cal potential is in the vicinity of the mobility edge, a
regime where our model is probably more reliable. This
raises the interesting possibility that the localization
phase transition in Ga1�xMnxAs could happen inside
the impurity band and that the ferromagnetic phase for
smaller Mn concentrations is governed by localized hole
states [10,17].

Though our calculations are based on microscopic
model calculations, they are only approximate, and more
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realistic ab initio calculations would be needed to give a
quantitative answer concerning the role of the impurity
band. Also, though the spherical approximation we used
is able to reproduce rather well the spectrum of a single
acceptor, it probably overestimates the effect of spin-orbit
coupling, and also the width of the impurity band.

In summary, based on microscopic calculations we
constructed a many-body Hamiltonian that is appropriate
for describing Ga1�xMnxAs in the dilute limit. We find
that the hopping of the carriers is strongly correlated with
their spin. This spin-dependent hopping is crucial for
capturing spin-orbit coupling induced random anisotropy
terms, the lifetime of the magnon excitations, and for
capturing the universality class of the localization phase
transition. Our calculations suggest the presence of an
impurity band for xactive � 0:01 Mn concentration.
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