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Transport Properties of Granular Metals at Low Temperatures
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We investigate transport in a granular metallic system at large tunneling conductance between the
grains, gT � 1. We show that at low temperatures, T � gT�, where � is the mean energy level spacing
in a single grain, the coherent electron motion at large distances dominates the physics, contrary to the
high-temperature (T > gT�) behavior where conductivity is controlled by the scales of the order of the
grain size. In three dimensions we predict the metal-insulator transition at the bare tunneling
conductance gCT � �1=6�� ln�EC=��, where EC is the charging energy of a single grain. Corrections
to the density of states of granular metals due to the electron-electron interaction are calculated. Our
results compare favorably with the logarithmic dependence of resistivity in the high-Tc cuprate
superconductors indicating that these materials may have a granular structure.
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of the electron coherent motion at distances greatly ex-
ceeding the single grain size a must be included; thus,

The main results of our work are as follows: (i) We
estimate the critical value gCT of the bare tunnel
A great deal of research in the current mesoscopic
physics focuses on understanding properties of granular
metals (see [1–3]). The interest is motivated by the fact
that while their properties are generic for a wealth of
strongly correlated systems with disorder, granular met-
als offer a unique experimentally accessible tunable sys-
tem where both the interaction strength and degree of
disorder can be controlled.

The key phenomenon revealing the most underlying
physics is transport, where the effects of interactions play
a crucial role. The processes of electron tunneling from
grain to grain that govern electron transfer are accompa-
nied by charging the grains involved after each electron
hop to another grain. This may lead to a Coulomb block-
ade, and one justly expects this effect to be of prime im-
portance at least in the limit of weak coupling. It thus
makes it clear, on a qualitative level, that it is the interplay
between the grain-to-grain coupling and the electron-
electron Coulomb interaction that controls transport
properties of granular metals; yet, despite the significant
efforts expended, a quantitative theory of transport in
metallic granular systems is still lacking.

A step towards formulating such a theory was made
recently in Ref. [3]. It was shown that depending on the
dimensionless tunneling conductance gT one observes
either exponential, at gT � 1, or logarithmic, at gT � 1,
temperature dependence of conductivity. The considera-
tion in [3] was based on the approach developed by
Ambegaokar, Eckern, and Schön (AES) [4] for tunnel
junctions. This technique, however, as shown in [5],
applies only at temperatures T > gT�, where � is the
mean energy level spacing in a single grain; in this regime
the electron coherence does not extend beyond the grain
size. At the low-temperature region, T � gT�, the effects
0031-9007=03=91(24)=246801(4)$20.00 
this important regime is not described by the AES ap-
proach [5].

Although experimentally the low-temperature regime
is well within the experimental reach [1,2], it has never
been addressed theoretically so far. The important ques-
tion whether the system is a metal or becomes an insu-
lator—in other words, whether the conductivity of the
granular metals at large conductances remain finite in the
limit of T ! 0— is still open.

In this Letter we investigate the low-temperature con-
ductivity of granular samples focusing on the case of
large tunneling conductance between the grains, gT�1.
To this end we develop a technique that goes beyond the
AES approach and includes effects of coherent electron
motion at distances larger than the size of the grain.
Without the Coulomb interaction, the granular system
would be a good metal in the limit gT � 1, and our
task is to include the charging effects in the theory. We
find that at temperatures T � gT� properties of the granu-
lar metal depend on the dimensionality of the array, and
corrections to the conductivity and density of states due to
the effects of Coulomb interaction are similar to those
obtained in Ref. [6] for a homogeneous metal. Thus, at
low temperatures the system behaves essentially as a
homogeneous metal contrasting the case of large tem-
peratures, T � gT�, considered in Ref. [3].

This means that at large conductances the 3D system is
a good metal. On the other hand, at gT � 1 a granular
sample is in the insulating state. Therefore, a 3D system
should exhibit a metal-insulator transition at the critical
value of the conductance gT , such that samples with
conductances gT > gCT are metals and their conductivity
remains finite at T ! 0, while samples with gT < gCT are
insulators and their conductivity vanishes at T ! 0.
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conductance at which the metal-insulator transition in 3D
occurs as

gCT � �1=6�� ln�EC=��; (1)

where EC is the charging energy of an isolated grain.
(ii) We find the expression for the conductivity of a
granular metal that includes corrections due to Coulomb
interaction and holds for all temperatures as long as these
corrections are small. The corresponding answer can be
conveniently written separating the correction due to the
contribution from the large energy scales " > gT� from
that coming from the low energy scales " < gT�.
Denoting corrections as ��1 and ��2, respectively,
we have

� � �0 � ��1 � ��2; (2a)

where�0 � 2e2gTa2	d, with a being the size of the single
grain, is the classical Drude conductivity for a granular
metal (spin included). Correction ��1 in Eq. (2a) con-
tains the dimensionality of the array d only as a co-
efficient and is given by the following expression [3]:
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On the contrary, the correction ��2 in Eq. (2a) that is
important only at temperatures T < �gT strongly depends
on the dimensionality of the array
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Here � �
R
1
0 dxx

	1=2�1	 coth�x� � x=sinh2�x��  1:83
and � �

R
1
0 dxx

	3=2 �coth�x� 	 x=sinh2�x��  3:13 are
the numerical constants. For a 3D granular system, a
temperature independent term of the order 1=gT has
been subtracted in the first line in Eq. (2c).

Corrections ��1 and ��2 are of a different origin: the
correction ��1 comes from the large energy scales " >
gT�, where the granular structure of the array dominates
the physics. The fact that this correction is essentially
independent of the dimensionality d means that the tun-
neling of electrons with energies " > gT� can be consid-
ered as incoherent. On the other hand, correction ��2 in
Eq. (2c) is similar to that obtained for homogeneous
metals long ago [6] and comes from the low energy scales,
" � gT�, where the coherent electron motion on the
scales larger than the grain size a dominates the physics.

It is important to note that in the low-temperature
regime all temperature dependence of conductivity comes
from the correction ��2. At the same time, in this regime
the correction ��1, though being temperature indepen-
dent, still exists and can be even larger than ��2.
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When deriving Eqs. (2) we neglected possible weak
localization corrections that may originate from quantum
interference of electron waves. This approximation is
legitimate if a magnetic field is applied as in Ref. [1] or
dephasing is strong due to inelastic processes.

Now we turn to the description of our model and the
derivation of Eqs. (2): We consider a d-dimensional array
of metallic grains with the Coulomb interaction between
electrons. The motion of electrons inside the grains is
diffusive, and they can tunnel from grain to grain. In
principle, the grains can be clean such that electrons
scatter mainly on grain surfaces. We assume that the
sample in the absence of the Coulomb interaction would
be a good metal. Although we assume that gT is large, it
should be still smaller than the grain conductance g0,
meaning that the granular structure is important and
the resistivity is controlled by tunneling between the
grains.

The system of weakly coupled metallic grains can be
described by the Hamiltonian

ĤH� ĤH0�ĤHc�
X
ij

tij � ̂ 
y�ri� ̂ �rj��  ̂ 

y�rj� ̂ �ri��; (3a)

where tij is the tunneling matrix element corresponding
to the points of contact ri and rj of ith and jth grains. The
Hamiltonian ĤH0 in Eq. (3a) describes noninteracting
isolated disordered grains and the term

ĤH c �
e2

2

X
ij

n̂niC
	1
ij n̂nj (3b)

describes the Coulomb interaction with Cij being the
capacitance matrix and n̂ni being the operator of the elec-
tron number in the ith grain. In the regime under consid-
eration one can neglect the coordinate dependence of a
single grain diffusion propagator. The electron hopping
between the grains can be included using the diagram-
matic technique developed in Refs. [5,7].

The conductivity of the granular metals is given by the
analytical continuation of the Matsubara current-current
correlator. In the absence of the electron-electron inter-
action the conductivity is represented by the diagram
Fig. 1(a) that results in high-temperature (Drude) con-
ductivity �0 which is defined below Eq. (2a). First order
interaction corrections to the conductivity are given by
the diagrams Figs. 1(b)–1(e). These diagrams are analo-
gous to ones considered in Ref. [6] for the correction to
the conductivity of homogeneous metals. We consider the
contributions from diagrams 1(b) and 1(c) and 1(d) and
1(e) separately. The sum of diagrams 1(b) and 1(c) results
in the following correction to the conductivity:
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P
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FIG. 1. Diagrams describing the conductivity of granular
metals: diagram (a) corresponds to �0 in Eq. (2a), and it is
the analog of Drude conductivity. Diagrams (b)–(e) describe
the first order correction to the conductivity of granular metals
due to electron-electron interaction. The solid lines denote the
propagator of electrons, and the dashed lines describe effective
screened electron-electron propagator. The tunneling vertices
are described by the circles. The sum of diagrams (b) and (c)
results in the conductivity correction ��1 in Eq. (2a). The other
two diagrams, (d) and (e), result in the correction ��2.
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a being the lattice vectors and

~VV�!;q� �
2EC�q�

�"q�	 i!��4"qEC�q� 	 i!�
: (5)

Here the charging energy EC�q� � e2=2C�q� is expressed
in terms to the Fourier transform of the capacitance
matrix C�q�. Performing the integration over the fre-
quency and summing over the quasimomentum q in
Eq. (4) with the logarithmic accuracy, we obtain the
correction (2b). One can see from Eq. (4) that the con-
tribution ��1 in Eq. (2b) comes from the large energy
scales, " > gT� such that at low temperatures the loga-
rithm is cut off on the energy scale gT�.

To obtain the total correction to the conductivity of
granular metal, the two other diagrams, Figs. 1(d) and
1(e), should be taken into account. These diagrams result
in the following contribution to the conductivity:
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(6)

In contrast to the contribution ��1 in Eq. (4), the main
contribution to the sum over the quasimomentum q in
Eq. (6) comes from the low momenta, q� 1=a. In this
regime the capacitance matrixC�q� in Eqs. (5) and (6) has
the following asymptotic form:

C	1�q� �
2

ad

8<
:
ln�1=qa�; d � 1;
�=q; d � 2;
2�=q2; d � 3:

(7)

Substituting Eq. (7) into Eq. (5), integrating over the
frequency, and summing over the quasimomentum q in
Eq. (6), we obtain the result for the correction ��2 in
Eq. (2c).

Comparing our results in Eqs. (2) with those obtained
in Ref. [3] using the AES functional, we see that the
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correction to the conductivity obtained in Ref. [3] is
equivalent to the correction ��1 in Eq. (2a), which cor-
responds in our approach to the sum of diagrams Figs. 1(b)
and 1(c). The correction ��2 in Eq. (2a) becomes impor-
tant only at low temperatures, T < gT�, where an AES
functional is not applicable. While in our approach both
corrections to the conductivity must be small
��1; ��2 � �0, the method of Ref. [3] gives the possi-
bility to show that for T � gT� the dependence of the
conductivity is logarithmic as long as �=e2a2	d � 1.

It follows from Eq. (2c) that at low temperatures, T <
gT�; for a 3D granular array, there are no essential
corrections to the conductivity coming from the low
energies since the correction ��2 is always small. This
means that the result for the renormalized conductance,
~ggT of Ref. [3] for 3D samples within the logarithmic
accuracy can be written in the following form:

~gg T�T� � gT 	
1

6�
ln

�
gTEC

max�~ggT�; T�

�
; (8)

such that it is valid for all temperatures as long as the
renormalized conductance ~ggT � 1. One can see from
Eq. (8) that for bare conductance, gT � �1=6�� �
ln�EC=��, the renormalized conductance ~ggT is always
large and the system remains metallic down to zero tem-
perature. In the opposite limit gT < �1=6�� ln�EC=��, the
system flows when decreasing the temperature to the
strong coupling regime ~ggT � 1 that indicates the onset
of the insulating phase. We see that with the logarithmic
accuracy the critical value of the conductance gCT is given
by Eq. (1).

The result for the bare critical conductance in Eq. (1)
agrees with the estimate for gCT that follows from the
consideration of Coulomb blockade phenomena in a single
grain [8]: the contribution of the Coulomb blockade to
thermodynamic quantities in the regime of strong cou-
pling is controlled by the factor � exp�	�g�T��, where
g�T� � gT 	 �1=Z�� ln�gTEC=T� with Z being the num-
ber of contacts. Coulomb blockade effects become strong
at g�T� � 1. Taking T � gT� and Z � 6 we estimate the
bare conductance as gCT � �1=6�� ln�gTEC=T� that co-
incides with Eq. (1).

In a similar way we can obtain interaction corrections
to the density of states (DOS) of granular metal,

�!�"�
!0

�	
1

4�

X
q

Im
Z
d!

tanh��"	!�=2T�
�"q�	 i!��"q 	 i!=4EC�q��

:

(9)

Here !0 is the DOS for noninteracting electrons, and "q
and EC�q� were defined below Eqs. (4) and (5), respec-
tively. Using Eq. (9) for a 3D granular array we obtain

�!3
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2�gT
ln

�
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�
; (10a)
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where A � gTa
3
R
d3q=�2��3"	1

q . For temperatures T �
gT� the correction to the DOS (10a) coincides with the
one obtained in Ref. [3] using the AES approach. It
follows from Eq. (10a) that for a 3D array of grains, as
in the case with conductivity, the main contribution to the
DOS comes from the large energy scales, " > gT�.

Using Eq. (9) for a 2D array we obtain the following
result for the correction to the DOS:

�!2
!0

� 	
1

16gT�2

(
2ln2gTECT ; T � gT�;

lngT�T ln
gE4

C

T�3 � 2ln2EC� ; T � gT�:

(10b)

Using the relation between the tunneling conductance,
gT , and the diffusion coefficient, D � gTa2�, one can
see that the temperature dependence of the DOS for T �
gT� given by Eq. (10b) coincides up to the temperature
independent constant with the result for the correction to
the DOS of the homogeneous metal [6].

The logarithmic behavior (2b) of the conductivity
is in good agreement with experimental findings [1,2].
It would be very interesting to extend the resistivity
measurements to the low-temperature regime where we
predict the temperature dependence (2c). A similar loga-
rithmic dependence of resistivity on temperature was
recently found in high-Tc compounds La2	ySryCuO4

(LSCO) and Bi2Sr2	xLaxCuO6�� in a very strong mag-
netic field [9,10]. A possible granularity of these samples
was suggested in Ref. [3]. Recently the microscopic
granularity was directly experimentally observed in the
superconducting state of Bi2Sr2CaCu2O8�� by the scan-
ning tunneling microscopy probe [11]. If we accept that
samples studied in [9,10] are indeed microscopically
granular, we can compare the results of the experiments
with our predictions. When doing so, it is convenient to
scale three-dimensional conductivity to the conductivity
of CuO planes, �plane. According to our predictions,

d�plane=d lnT � �e2=� �h�k; (11)

where the coefficient k � 1=2� in the low-temperature
and k � 1=d in the high-temperature regimes. While
in the low-temperature regime the application of Eq. (11)
is legitimate only under the assumption that elec-
trons in different CuO planes are incoherent, in the
high-temperature regime the behavior of conductivity
according to Eq. (2b) is logarithmic for any dimension.
In this regime the real dimensionality d should be re-
placed by d � Z=2, where Z is the (average) number of
the contacts of each grain with all the adjacent grains.
Describing the data shown in Fig. 3 of Ref. [10] by our log
dependencies at temperature T  5 K we extract k ’ 0:4,
for Sr concentration of y � 0:08 for La2	ySryCuO4 [12];
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for the Bi2Sr2	xLaxCuO6�� compound we find k ’ 0:2 for
x � 0:84 La concentration, and k ’ 0:3 for x � 0:76. For
each particular curve the values k extracted from Fig. 3 of
Ref. [10] increase with temperature (especially in the case
of LSCO), and this is in a complete agreement with our
results provided that the ‘‘coherent-incoherent’’ crossover
occurs at about T � 5 K. At higher temperatures k notice-
ably exceeds 1=2�, supporting the idea of a granu-
larity of doped cuprates.

In conclusion, we have investigated transport proper-
ties of granular metals at large tunneling conductance and
obtained corrections to the conductivity, Eqs. (2), and
DOS, Eqs. (10), due to electron-electron interaction. We
have shown that at temperatures T > gT�, the granular
structure of the array dominates the physics. On the
contrary, at temperatures T � gT� the large-scale coher-
ent electron motion is crucial. Comparing our results with
experimental data supports the assumption of a granular
structure of doped high-Tc cuprates.
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