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Theory of quantum corrections to conductivity of granular metal films is developed for the realistic
case of large randomly distributed tunnel conductances. Quantum fluctuations of intergrain voltages (at
energies E much below the bare charging energy scale EC) suppress the mean conductance g�E� much
more strongly than its standard deviation ��E�. At sufficiently low energies E� any distribution becomes
broad, with ��E�� � g�E��, leading to strong local fluctuations of the tunneling density of states. The
percolative nature of the metal-insulator transition is established by a combination of analytic and
numerical analysis of the matrix renormalization group equations.
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FIG. 1. Conducting bonds (with gij > 0) at different values of
the RG time t. Results of numerical simulation of Eq. (2) on the
lattice 20
 20 with P0�g� � �2g0��g�=	�=�g

2  g20�.
(a) t � 0:64g0 with the fraction of conducting bonds Ncond �
0:95; (b) t � 1:08g0 with Ncond � 0:55.
Introduction— Low-temperature electron transport in
granular metals has been intensively studied in recent
years [1–4]. It was shown that in the temperature range
T � g� (where g� 1 is the characteristic value of di-
mensionless intergrain conductance in units of e2=2	 �h,
and � is the intragrain level spacing), quantum correc-
tions to conductivity originate mainly from local fluctua-
tions of voltages between neighboring grains. This effect
can be treated within the Ambegaokar-Eckern-Schoen
model [5] and leads to logarithmic temperature depen-
dence of the effective conductance [1]:

g�T� � g0 �
4

z
ln
g0EC
T

; (1)

where EC � � is the charging energy of an individual
grain, g0 is the bare tunneling conductance of intergrain
junctions (identical for all junctions), and z is the coor-
dination number of the lattice. The result (1) is valid as
long as the renormalized conductance g�T� is large, i.e.,
down to temperatures T1 � g0ECe�zg0=4. It was argued
[2,3] that transition from metal to insulator behavior
(MIT) occurs at T � T1 as long as T1 � g�. The same
conclusion for the two-dimensional (2D) case was
reached [4] via instanton analysis.

Although the above results may well be applied to
artificial 2D arrays of well-defined tunnel junctions, tun-
nel conductances gij are random in granular metals. In
this Letter we investigate the role of gij randomness for
energy (temperature) dependent properties of thin granu-
lar films, such as macroscopic conductance geff�T� and the
local tunneling density of states (LTDOS) �i�E�.
Quantum fluctuations lead to suppression of gij described
by the one-loop renormalization group (RG) equation:

dgij
dt

� �2gijRij; (2)

where t�E� � ln�g0EC=E� is the auxiliary RG ‘‘time’’, g0
being some mean bare conductance, and Rij is the resist-
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ance of the network between the points i and j.
Physically, renormalization of gij is due to fluctuations
of voltage between the grains i and j, which are governed
by the corresponding resistance Rij. Equation (2) is a
straightforward generalization of the RG equation for a
regular array [1] with gij 	 g and Rij � 2=gz, whose
solution is given by Eq. (1). The system of RG Eqs. (2)
is nontrivial since Rij is a complicated nonlocal function
of all individual conductances gkl.

In a regular system, Eq. (2) drives all conductances to
zero simultaneously at t � tc � zg0=4, marking the point
of the MIT. We will show that in a random system re-
normalized conductances of the junctions collapse to zero
neither all at once, nor one by one, but in groups. These
groups enclose clusters, consisting of one or several sites,
which become disconnected from the rest of the network
after the collapse (see Fig. 1). As a result, the MIT in a
natural granular system is a percolative transition: it takes
place when enough clusters have become disconnected so
that the percolation via still conducting links is destroyed.

The above picture of conductances, eventually collaps-
ing to zero, follows from the one-loop RG Eq. (2). The
one-loop approximation breaks down at g� 1; at lower
 2004 The American Physical Society 136403-1



VOLUME 93, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S week ending
24 SEPTEMBER 2004
energies the conductance decays exponentially with the
RG time t�E�. Therefore, Eq. (2) can adequately describe
only the initial stage of the MIT. Nevertheless, there
exists a region near the transition where the percolative
cluster contains good conductances with g > 1 so that
Eq. (2) is still applicable.

We start from the case of relatively narrow original
distribution P0�g�, characterized by the mean value g0
and the standard deviation �0 � g0, and show that the
renormalized distribution P�g� broadens. In particular,
for the square lattice (z � 4):

��E�
g�E�

�
�0
g0

g0=g��������������������������������������������
2 ln�g0=g� lnln�g0=g�

p ; (3)

where g 	 g�E� � g0 � ln�g0EC=E�. Equation (3) is a
large- ln�g0=g� asymptotics of a more general expression
(see Eq. (7) below). It is valid as long as��E� � g�E�, i.e.,
above E� � T� � g0ECe

�g0�0 � T1, where T1 marks
MIT in an ideal array with �0 � 1. Thus transition
from metal into insulator in a granular array is intrinsi-
cally inhomogeneous. The vicinity of this transition at
max�E; T� � T� is difficult for exact analytical treatment
as the width of distribution P�gjE� becomes of the order
of its mean value. In this region we employ the effective-
medium approximation (EMA) and numerical solution of
the RG Eqs. (2), and demonstrate that MIT is of a perco-
lative nature.

Strong self-developed inhomogeneity of a granular
array can be probed by scanning tunneling measurement
of the LTDOS modified by the Coulomb zero-bias anom-
aly (ZBA) [6–8]. ZBA modification Z�E� � ��E�=�0 of
the average LTDOS in a regular array was considered in
Refs. [1,3] and found to become very large before ap-
proaching MIT. Here we analyze spatial fluctuations of
the ZBA suppression factor Zi�E�. For an originally nar-
row distribution P0�g�, the log-normal distribution of the
ZBA factors is found, with std�lnZi�E�� � ��E�=g�E�.
Thus we predict order-of-unity local fluctuations of
LTDOS at max�E; T� � T�. Spatial correlation length
��E� of these fluctuations is found to grow moderately
with decreasing E in the case of weak original disorder
��E� �

�������������������������
ln�g0=g�E��

p
, reaching

���������������������
ln�g0=�0�

p
at the border

of strong inhomogeneity E� T�. For the region in the
vicinity of MIT, where relative fluctuations are large, we
present numerical analysis of LTDOS fluctuations. Below
we provide a brief derivation of our results.

Narrow distribution.—If the standard deviation � of
the distribution is much smaller than the mean g, the
latter follows the homogeneous solution (1): g�t� � g0 �
t, while evolution of �gij � gij � g can be described
perturbatively. Resistance can be written as Rij�Gii

Gjj�2Gij, where Gij � Â�1
ij is the Green function of the

diffusion operator on the network defined by the matrix
elements Aii �

P
jgij and Aij � �gij [9]. Using the per-
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turbative series Gij � Gij �Gik�AklGlj  . . . we find

�Gij � �
X
hkli

�gkl�Gik �Gil��Gjk �Gjl�: (4)

In the momentum representation G�p�� �2g"�p���1, for
the square lattice, "�p��2�cospx�cospy.

To proceed further we choose a vector representation
for conductances g#i , when each edge is characterized
by the lattice site i, which it goes from, and direction #,
which can be either horizontal (  x) or vertical (  y).
Using Eq. (4), introducing a new time variable s �
ln�g0=g�t�� � � ln�1� t=g0� and passing to Fourier rep-
resentation, we get a linear evolution d�g#�p�=ds �
�M#%�p��g%�p�, governed by the 2
 2 time-
independent matrix M�p�. One of its spectral branches,
&�p�, is gapped, whereas the other branch &��p�, be-
comes gapless in the long wavelength limit &��p ! 0� �
�p2=4	� ln�1=p�, see Ref. [9]. Individual conductances
evolve as

�g#�r; s� �
X
r0
K#%�r� r0; s��g%�r0; 0�; (5)

with the Fourier-transformed kernel given by

K�p; s� � K1�p; s�  K2�p; s��ei#p�̂  e�i#p�̂��; (6)

where K1;2�p; s� � �e�&��p�s � e�&�p�s�=2, #p � �px�
py�=2, �̂� � ��̂1 � �̂2�=2 and �̂k are the Pauli matrices.

Assuming that different conductances are uncorrelated
at s � 0, we find for the variance of the distribution:

�2�s�

�20
�
1

2

Z
�dp��e�2&��p�s  e�2&�p�s�: (7)

For s� 1, ��s�=�0 � 1� s=2 . . . , which is to be
compared with the decay of the mean conductance
g�s�=g0 � e�s � 1� s . . . . Thus, even at the initial
stage of the evolution, the width of the distribution decays
slower than its average. In the case s� 1, the integral (7)
is dominated by the soft mode &��p� at p ! 0 leading to
�2�s�=�20 � 1=�2s lns� and hence to Eq. (3).

Apart from broadening the single-site distribution
P�g�, the RG flow (2) produces correlations between �g
at different links C#%�r; s1; s2� � h�g#�r; s1��g%�0; s2�i.
The Fourier transform of the correlation function reads:

C�p; s1; s2� � �20K�p; s1  s2�: (8)

At the initial stage of evolution, s 	 �s1  s2�=2 & 1,
correlations are short ranged. At s * 1, correlations
with large correlation length ��s� �

����������������������
�4=	�s lns

p
develop:

C#%�r; s1; s2� � �2�s� exp��r2=�2�s��.
Spatial fluctuations of gij lead to fluctuations of the

LTDOS �i�E� � Zi�E��0. The ZBA suppression factor
Zi�E� for granular media at E � g� can be found accord-
ing to the simple ‘‘environmental theory’’ [10]:
136403-2
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lnZi�E� � �2
Z t

0
Ri�t

0�dt0; (9)

where Ri�t� is the resistance between the site i and the far
region of the array at the energy scale E � g0ECe�t. The
same result follows from the analysis provided in [1,3]. It
is important to note that in a homogeneously disordered
metal the short-length cutoff in the integral that deter-
mines the effective resistance R�E� is given by the diffu-
sion length

�������������
�hD=E

p
, whereas in the present case it is just

the grain size. The long-scale cutoff for the logarithmic
divergency of Ri�E� in 2D is L�E� � e2geff=E (in the
absence of external screening). Thus, one can write
Ri�E� � Gregii , where the otherwise divergent Gii is regu-
larized by the finite length L�E�. Local fluctuations of
lnZi�E� are determined by a much smaller region of the
size � around the site i so that the object �Ri � �Gii is
already free of infrared divergency and is independent on
the details of screening. Employing Eq. (4) and averaging
�� lnZi�t��2 with the help of Eq. (8) we get for the variance
of the ZBA exponent in the limiting cases:

h�� lnZi�t��
2i �

8>><
>>:
0:07�20
g20

s2; s & 1;

�20
8	2g20

e2s lns
s ; s * 1:

(10)

The low line of Eq. (10) can be rewritten as
h�� lnZi�t��2i � �lns=2	�2�2�s�=g2�s�, indicating that
fluctuations of the ZBA factors Zi become of the order
of unity simultaneously with the renormalized ratio �=g.

The results of numerical simulation for a model distri-
bution P0�g� � exp���lng=g0�

2=2�21�=�
�������
2	

p
�1g� with

the moderately small variance �20 � g20�e
2�21 � e�

2
1� �

�0:32g0�
2 on the lattice 32
 32 are shown in Fig. 2, where

we present the distribution of the local values of Zi�E� at
three values of the RG time t. Upon lowering the energy
scale and approaching the MIT transition at E� Tc �
g0ECe�tc with tc � 0:99g0, we observe a growing relative
width of Z distribution with the zero-Z peak developing
0.0 0.5 1.0 1.5             2.0           2.5

a.
u.

Z  ‹Z›/ 

FIG. 2. Histograms for the distribution of the ZBA factors
Z�E� near the percolation threshold tc � 0:99g0, obtained
numerically for �0=g0 � 0:32: t � 0:8tc (solid line); t �
0:9tc (dashed line); t � 0:95tc (dotted line).
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near the percolation threshold due to the considerable
weight of disconnected clusters.

Effective-medium approximation (EMA).—In this ap-
proximation one takes into account only the simplest —
local— correlations between gij and Rij, while all distant
conductances are replaced with a homogeneous medium
with effective conductance geff (see, e.g., [11]). Spatial
correlation is neglected within EMA, and the system at
all ‘‘RG times’’ t is completely described by the single-
conductance distribution function P�gjt�. While being an
uncontrolled approximation, EMA provides an instru-
ment to attack the final stage of evolution of any initial
distribution—the stage with �� g. We will see that, as is
typical for EMA, it works quite well except for the
immediate vicinity of MIT, for determination of energy-
dependent effective conductance geff�t�.

Within the EMA, Rij � �gij  �z=2� 1�geff��1 should
be substituted into Eq. (2). The effective conductance is
then found from the self-consistency condition [11]
hRij�gij � geff�igij � 0. This procedure leads to a non-
linear integral equation for the function geff�t�:

Z 1

0
P0�g0�dg0

g�g0; fgeffgjt� � geff�t�
g�g0; fgeffgjt�  �z2� 1�geff�t�

� 0: (11)

For a general P0�g0� this equation can be solved only
numerically. If the distribution P0�g0� is narrow, its stan-
dard deviation is given by �EMA�s�=��0� � e�s�1�2=z�. At
earlier stages (s & 1) it coincides (for the square lattice
case z � 4) with the exact perturbation theory (7), but it
deviates from it at large s, where p dependence of the
eigenvalue &��p� becomes important.

An important and physically relevant class of distri-
butions, which allow for analytical EMA treatment, is
defined by the condition that lng is symmetrically dis-
tributed around some mean value. For all such distribu-
tions on the square lattice a simple solution for the
effective conductance can be obtained: geff�t� � g0 � t
for t < tc � g0 and geff�t� � 0 at t � tc, where g0 �
exphlngij�0�i. Solutions gij�t� for the individual conduc-
tances with gij�0�> g0 go above geff�t� and eventually—
one by one —become identical zeros at t � tijc > tc.
Solutions with gij�0�< g0 go below geff�t� and become
zeros all at once at t � tc, together with geff�t�. The
fraction Ncond�t� of conducting bonds, i.e., those having
gij > 0 within the one-loop accuracy of Eq. (2), jumps
from 0 to 1=2 at t � tc and then decreases monotonically,
vanishing at t� tc.

Clustering and percolation.—The t dependence of
geff�t� and Ncond�t� is shown in Fig. 3 together with the
results of numerical simulations for the initial distribu-
tion P0�g� � �2g0��g�=	�=�g2  g20� on the square lattice
32
 32. One can see that the simulated geff�t� follows the
EMA in the wide range of t, while in the vicinity of the
transition it clearly deviates from the EMA and ap-
136403-3



FIG. 3. Results of the numerical simulation (solid lines) and
EMA (dashed lines) for the global conductivity geff�t� and the
fraction of conducting bonds Ncond�t� (see text for details).
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proaches zero with an exponent ,> 1. The numerically
found Ncond�t� behaves, however, quite smoothly, showing
no jump at t � tc. The reason for this smoothness is,
apparently, clusterization as demonstrated in Fig. 1 and
discussed in detail in Ref. [9]. The position tc of the
percolative transition is a function of the initial distribu-
tion P0�g�. In general, tc is on the order of some mean
initial conductance g0, while the correct coefficient
should be determined numerically.

The evolution of the network of conductances with the
growth of the parameter t�E� is rather similar to what
would be expected at the classical percolation transition.
However, our system can not be described by either purely
‘‘bond’’ or ‘‘site’’ percolation, due to development of
local correlations (clustering) along with the RG flow.
In particular, the numerically observed (cf. Figure 3)
value of Ncond�tc� is clearly larger than 1=2, contrary to
expectations for purely bond percolation on the square
lattice. More detailed numerical work is needed to deter-
mine the nature of this new kind of percolative transition;
in particular, ‘‘measurements’’ of the conductivity expo-
nent , (equal to 1.3 in the standard percolation problem
[12]) would be very desirable.

Conclusions.—We have shown that at low temperatures
strong intrinsic inhomogeneities are developing in granu-
lar metal arrays with moderately large random bare con-
ductances gij � 1. As a result, the Coulomb-driven
metal-insulator transition expected if g0 � ln�EC=��
[2,4] acquires features of percolation transition. Most
directly, the predicted behavior can be detected by mea-
suring the distribution of the local tunneling density of
states at low temperatures. The best object for such a
study would be a granular cermet of metal grains in the
insulating matrix, like those studied in Refs. [13,14]. In
these materials the ratio EC=� was about 1
 103, indi-
cating the existence of a broad range for logarithmic
corrections to conductivity. It is hardly possible that local
tunnel conductances in such a granular cermet are all
equal; at best, they can be distributed with the width on
the order of the mean conductance. Our results, presented
136403-4
in Fig. 3, show that a simple logarithmic dependence
geff�T� � g0 � ln�g0EC=T� holds in a wide range of T
for moderately random granular arrays as well, at least
for the class of practically important symmetric distri-
butions of log�g� in the 2D space.

If a granular metal has a tendency to become super-
conductive with Tsc � Tc, its local superconductive prop-
erties are expected to be strongly inhomogeneous due to
position-dependent Coulomb effects. In other terms,
superconductive properties of granular metal can be
much more of a ‘‘granular nature’’ than its normal prop-
erties at elevated temperatures. In this regard we mention
very interesting recent experimental results [15].
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