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Fluctuation Conductivity of Thin Films and Nanowires Near a Parallel-Field-Tuned
Superconducting Quantum Phase Transition
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We calculate the fluctuation correction to the normal state conductivity in the vicinity of a quantum
phase transition from a superconducting to a normal state, induced by applying a magnetic field parallel to
a dirty thin film or a nanowire with thickness smaller than the superconducting coherence length. We find
that at zero temperature, where the correction comes purely from quantum fluctuations, the positive
‘‘Aslamazov-Larkin’’ contribution, the negative ‘‘density of states’’ contribution, and the ’’Maki-
Thompson’’ interference contribution are all of the same order and the total correction is negative.
Further, we show that, based on how the quantum critical point is approached, there are three regimes that
show different temperature and field dependencies which should be experimentally accessible.
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FIG. 1. Phase diagram of a superconducting nanowire (thin
film) in a parallel magnetic field (parametrized by �). The
boundary between the quantum and the intermediate regime,
shown by a dotted line, is different for a wire and film as marked
in the figure while all other boundaries coincide.
The interest in the physics of quantum phase transitions
(QPT) and of a quantum critical point (QCP) (see [1] for a
review) is motivated by the explosive growth of its experi-
mental realizations and calls for a theoretical advance. The
challenge for a theory is twofold: first, it has to identify
experimentally accessible systems experiencing QPT.
Second, these systems should allow for a systematic and
comprehensive theoretical description. In this respect, the
QCP realized in dirty superconductors of reduced dimen-
sionality [2–4] by applying a magnetic field is an exem-
plary phenomenon since, on the one hand, it can be
explored in a controllable way in the vicinity of the critical
point, and, on the other hand, it allows for a systematic
quantitative theoretical study.

In this Letter we present a full systematic investigation
of fluctuation corrections [5,6] to the normal state conduc-
tivity of a thin wire or a thin film in the vicinity of a QPT
from a superconducting to a normal state, induced by an
applied magnetic field.

We consider a thin wire (or thin film) with a diameter d
(or a thickness t for the film) much smaller than the
superconductor coherence length �, placed in a field H
directed along the wire (or parallel to the film). Such a
system is effectively one (two) dimensional from the point
of view of pair fluctuations. In a dirty system the combined
effect of the magnetic field and electron scattering gives
rise to the loss of phase coherence of the Cooper pair, and,
at a sufficiently strong field, to the superconductor-normal
metal transition. The time �d of the loss of coherence
caused by magnetic field can be estimated as
�dDH

2l2=�2
0 � 1, whereD is the diffusion constant, �0 �

	c=e, and l is the characteristic sample size [7–9]. The
magnetic field can be, thus, parametrized by the so-called
depairing parameter �� 1=�d whose exact expression for
a particular geometry can be obtained from the Usadel
05=94(3)=037003(4)$23.00 03700
equation [10] as

� �

�
D�eHd=2c�2=4 wire
D�eHt=c�2=6 film:

(1)

The superconducting critical temperature Tc is related to
� (see Fig. 1) via the standard relation (similar to that in the
theory of paramagnetic impurities [11])

ln�Tc=Tc0� �  �1=2� �  �1=2� �=2	Tc�; (2)

where  is the digamma function and Tc0 � Tc�H � 0� is
the critical temperature in the absence of a magnetic field.
At T � 0 the superconductivity breaks down at �c0 �
�c�T � 0� � 	Tc0=2�, where ln� � 0:577 is the Euler
constant. The realization of an analogous QCP in a super-
conductor with paramagnetic impurities was first sug-
gested in Ref. [12] (see also Ref.[13]). Since in our case
the depairing parameter � depends on H, it allows for a
well controlled exploration of the QPT and its vicinity by
varying the applied magnetic field.
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Our approach is based on the diagrammatic perturbation
theory. Note that the technique using the time-dependent
Ginzburg-Landau formalism that was adapted in
Refs. [12,13] accounts only for the direct ‘‘Aslamazov-
Larkin’’ (AL) type of contribution [14] to the fluctuation
conductivity that comes from the charge transfer via fluc-
tuating Cooper pairs, but misses the zero-temperature con-
tribution to the correction. On the contrary, our approach
takes care of all the contributions including the ‘‘density of
states’’ (DOS) part resulting from the reduction of the
normal single-electron density of states at the Fermi level,
and the more indirect ‘‘Maki-Thompson’’ (MT) interfer-
ence contribution [15,16]. At zero temperature, where the
correction comes purely from quantum fluctuations, these
turn out to be of the same order as the AL contribution.

Our result for the fluctuational correction to the normal
state conductivity can be conveniently presented as a sum
of the zero-temperature and finite-temperature contribu-
tions:

����; T� � ��0��� � ��T��; T�: (3)

The zero-temperature correction is given by

��0��� � �
2De2

	d�2� d�

Z ddq

�2	�d
�Dq2�2

�3
q ln��q=�c�

; (4)

where �q � ��Dq2=2 and d � 1; 2 correspond to a wire
and film, respectively. Its magnitude decreases monotoni-
cally with increasing field; this leads to a negative magne-
toresistance. Note that a negative magnetoresistance was
found also in granular superconductors [17] and in thin
films in perpendicular magnetic field [18]. Shown in Fig. 2
are plots of the dimensionless correction

� ��0��� � e�2 	

�
�D=�c0��1=2��0��� wire
��0��� film:

(5)
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FIG. 2. Dimensionless zero-temperature fluctuation conduc-
tivity correction (5) as a function of depairing parameter �. Inset
shows dependence of the resistivity on the magnetic field for
temperatures T=�c0 � 0:01 (upper curves) and T=�c0 � 0:1
(lower curves). Resistivity is normalized to the high field resis-
tivity R0 while the magnetic field is normalized to the critical
field Hc0 at T � 0. The values for the high field resistivity are
taken as R�1

0 � e2=c for a film and R�1
0 � e2�D=�c0�

1=2 for a
wire.
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When expanded around the QCP, the dimensionless con-
ductivity close to the QCP is given by

� ��0��� � � ��0�� � �c0� � b��� �c0�=�c0; (6)

with the numerical coefficient b � 0:386 and b � 0:070
for a wire and film, respectively. Note that since the upper
critical dimension for our model at zero temperature is 2,
the result (6) is expected to hold only outside the quantum
Ginzburg region for both wire and film.

In the vicinity of the QCP (T; �� �c 
 �c0), the field
dependence of ��T��; T� turns out to be more singular
than that of ��0��� and for T > �� �c�T� its leading
term is given by

��T��; T� � e2 	
� ���

D
p

T
4
��
2

p
����c�T�

3=2 wire
T

4	����c�T�
film

(7)

while for T < �� �c it is

��T��; T� � e2 	
� 	

���
D

p
T2

12
��
2

p
����c�T�5=2

wire
T2

18����c�T�2
film:

(8)

The contributions ��T and ��0 become comparable at

T � T0��� �
�
��� �c0�

7=4=�3=4
c0 wire

��� �c0�
3=2=�1=2

c0 film:
(9)

The key point is that the behavior of the fluctuation cor-
rections to the conductivity depends on the way one ap-
proaches the QCP and we can identify three regimes in the
vicinity of the QCP that show qualitatively different be-
haviors as illustrated in Fig. 1. There is a ‘‘classical’’
regime for T > �� �c, where the correction is given by
Eq. (7); an ‘‘intermediate’’ regime for �� �c > T >
T0���, where the correction behaves according to Eq. (8);
and a ‘‘quantum’’ regime for T0���> T, where the behav-
ior crosses over to an essentially zero-temperaturelike
behavior which is not singular and almost temperature
independent with the fluctuation correction dominated by
��0 as given by Eqs. (4)–(6).

Since in the quantum region the correction to conduc-
tivity is negative whereas in the classical and intermediate
region it is positive, we predict a nonmonotonic behavior
of the resistivity as a function of the magnetic field at finite
temperature. The corresponding plots are shown in the
inset of Fig. 2 for nanowires and thin films. Such a behavior
was indeed reported in experiments on amorphous Nb thin
films in Ref. [2], and recently on bismuth ultrathin films in
Ref. [3]; while for nanowires, to the best of our knowledge,
it was not reported yet.

To derive our main results, we carry out a microscopic
calculation within the standard framework of the tempera-
ture diagrammatic technique in a disordered electron sys-
tem [19–21] in the diffusive limit (inverse mean free time
��1 � T; �). The main building block of the diagram-
matic technique in the presence of the BCS interaction is
3-2
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the so-called ‘‘Cooperon,’’ the ladder diagram that de-
scribes coherent scattering by impurities in the particle-
particle channel. In the presence of a parallel magnetic
field, it is given by

C��; q� �
1

j�j �Dq2 � 2�
; (10)

where � is the bosonic Matsubara frequency and q is the
momentum in the effective dimension. Using Eq. (10) in a
standard way, one obtains the ‘‘fluctuation propagator,’’
i.e., the impurity-averaged sum over the ladder diagrams
corresponding to the electron-electron interaction in the
Cooper channel,

K�1��; q� � ln
�
T

T0
c

�
�  

�
1

2

�
�  

�
1

2
�
�q � j�j=2

2	T

�
;

(11)

where � is the bosonic Matsubara frequency. The pole of
Eq. (11) defines the boundary between the superconducting
and normal phases given by Eq. (2). At low temperatures,
T 
 �c0, the fluctuation propagator reduces to
K�1��; q� � ln���q � j��j=2�=�c�T�.

The fluctuation correction to the conductivity is obtained
as usual from the Kubo formalism with the appropriate
analytic continuation. The standard set of diagrams con-
stituting the AL, DOS, and MT contributions is shown in
Fig. 3.

The AL contribution [Fig. 3(a)] can be expressed as a
sum of two terms: ��AL � ��AL

1 � ��AL
2 with

��AL
1

e2
�

D2

2	Td

Z ddq

�2	�d
d�

sh2 �
2T

�ImfK��i�; q��2
�qg

	 ImfK��i�; q�g� �ImfK��i�; q���qg�
2; (12)

��AL
2

e2
�

D2i

8	4T3

Z ddqd�

�2	�d
q2x 

0

�
1

2
�
�q � i�=2

2	T

�

	  00

�
1

2
�
�q � i�=2

2	T

�
K2��i�; q�; (13)

where ��q � �q=2	T� 0�1=2� ��q � i�=2�=2	T. The
a) b) c)

d) e) f )

FIG. 3. Diagrams for the fluctuation conductivity:
(a) Aslamazov-Larkin diagram, (b)–(c) Maki-Thompson dia-
grams, and (d)–(f) density of state diagrams. The full line stands
for the disorder averaged normal state Green’s function, the
wavy line for the fluctuation propagator K, the shaded rectangle
for the Cooperon C, and the shaded triangle for the vertex
C=2	��.
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contribution ��AL
1 appears only at finite temperature while

��AL
2 contains the contribution that survives even at T �

0. Note that ��AL
2 that describes the quantum regime

results from differentiating �q��i�� with respect to �
and is missed within the usual static approximation ( � �
0).

The MT correction is given by ��MT � ��MT
1 � ��MT

2 ,
where

��MT
1

e2
�

D
2	

Z ddqd!d�

�2	�d
th
!
2T
K��i�; q�

	

�
cth �

2T

��q � i!��
3 �

i

2Tsh2 �
2T

1

�2
q �!2

�

�
; (14)

��MT
2

e2
� �

3D2

2	

Z ddqd!d�

�2	�d
th !

2T

th �
2T

q2xK��i�; q�

��q � i!��
4 ; (15)

with !� � !��=2. For low temperatures, the contribu-
tions ��MT

1 [Fig. 3(b)] and ��MT
2 [Fig. 3(c)] are of the

same order and both need to be taken into account. On the
contrary, at high temperatures, the diagram [Fig. 3(c)]
having an extra Cooperon propagator is of a lower order.

The DOS fluctuation correction is given by the expres-
sion ��DOS � ��DOS

1 � ��DOS
2 where

��DOS
1

e2
�

D
2	

Z ddqd!d�

�2	�d
th
!
2T
K��i�; q�

	

�
cth �

2T

��q � i!��
3 �

i

2Tsh2 �
2T

Re
1

��q � i!��
2

�
;

(16)

��DOS
2

e2
�
D2

4	

Z ddqd!d�

�2	�d
q2xth

!
2T
K��i�; q�

	

�
�3cth �

2T

��q � i!��
4 �

i

Tsh2 �
2T

Re
1

��q � i!��
3

�
:

(17)

The correction ��DOS
1 corresponds to diagrams shown in

Figs. 3(d) and 3(e) while ��DOS
2 is given by diagrams from

Fig. 3(f) having an extra Cooperon propagator.
In the zero-temperature limit, one can see that, apart

from ��AL
2 , only the terms in the DOS and MT contribu-

tions that have a cth��� survive. Integrating these terms
over frequency � by parts, we come to the result of Eq. (4).
It is interesting to note that at T � 0, we find that the AL
correction is positive and the DOS correction is negative,
as expected, while the MT correction which does not have
a prescribed sign is negative and related to ��AL via
��MT � ���AL=2.

At nonzero temperatures, the terms having a factor
1=sh��=2T� need to be included. One finds that the leading
contribution close to the QCP comes from ��AL

1 and the
evaluation of this term in different regimes leads to the
results Eqs. (7) and (8) discussed earlier.

Finally we would like to point out an interesting experi-
mental realization of QCP in a quantum wire, that of a
3-3
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hollow cylinder with thin walls [4]. In this case the pair-
breaking parameter reads

��D
�
eH
4c

�
�4n�

eH
c

�r21 � r22�
�
�n2

ln�r2=r1�

r22 � r21

�
; (18)

where r1 and r2 are the inner and outer radii, respectively,
and n is an arbitrary integer. For a thin cylinder (r1 � r2 �
r) it reduces to � � �D=2r2���=�0 � n�2, where � is the
flux enclosed by the cylinder, thereby rendering the classic
Little-Park oscillations [7] of Tc as can be seen from
Eq. (2). Interestingly, for a cylinder with small enough
radius, r < rc �

�����������������������
D�=4	Tc0

p
, it is possible to push the

Tc down to zero at magnetic fields corresponding to half-
integer fluxes � � �0�1=2� n�, as was experimentally
observed in Ref. [4]. While the positive fluctuation con-
tribution to conductivity that we would associate with the
classical regime was clearly observed, the behavior ex-
pected for the quantum and intermediate regimes was not
reported so far.

In conclusion, we have investigated the fluctuation cor-
rection to the normal state conductivity in the vicinity of a
parallel-field-induced QCP in dirty samples of reduced
dimensions, taking into account both quantum and thermal
fluctuations within the diagrammatic perturbation theory.
Our key finding is that there are three regimes that show a
qualitatively different behavior ranging from quantum to
classical. The particular temperature and field behavior of
the conductivity is dictated by the choice of path in ap-
proaching the QCP while making the measurement. We
have found that, for a nanowire (or for a hollow cylinder) as
well as for a thin film, the zero-temperature conductivity
correction that also governs the quantum regime is nega-
tive, which means that the quantum pairing fluctuations
increase the resistance to the charge flow. Our findings
imply that experiments should detect a negative magneto-
resistance in the quantum regime.

To make a detailed comparison with our theory, the
weak localization [22] and Altshuler-Aronov [21] correc-
tions must be subtracted from the experimental conductiv-
ity. However, inclusion of these corrections will not affect
the predicted negative sign of the magnetoresistance at low
temperatures. Indeed, the Altshuler-Aronov correction
does not depend on the magnetic field, while the weak
localization correction is determined by the Cooperon
propagator (10) via �� � ��2e2D=	�

R
ddq=

�2	�dC�0; q� and thus gives also a negative contribution
to the magnetoresistance. We hope that our findings will
stimulate further experimental measurements of fluctuat-
ing conductivity in quantum wires where the negative
magnetoresistance at low temperatures to the best of our
knowledge was not yet found and further in-depth analysis
for films in which case the negative magnetorsesistance
was indeed observed.
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