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Rectification in Luttinger Liquids
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We investigate the rectification of an ac bias in Luttinger liquids in the presence of an asymmetric
potential (the ratchet effect). We show that a strong repulsive electron interaction enhances the ratchet
current in comparison with Fermi-liquid systems, and the dc I-V curve is strongly asymmetric in the low-
voltage regime even for a weak asymmetric potential. At higher voltages the ratchet current exhibits an
oscillatory voltage dependence.
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Asymmetric conductors have asymmetric I-V curves.
This phenomenon is known as the diode or ratchet effect
and plays a major role in electronics. Recently transport
asymmetries in single-molecule devices and other meso-
scopic systems have attracted a lot of interest. The idea that
asymmetric molecules can be used as rectifiers is rather old
[1]; however, it was implemented experimentally [2] only
in the 1990s. Another experimental realization of a meso-
scopic rectifier is an asymmetric electron waveguide con-
structed within the inversion layer of a semiconductor
heterostructure [3]. Transport asymmetry has been ob-
served in Luttinger liquid systems such as carbon nano-
tubes [4] and for the tunneling in the quantum Hall edge
states [5]. These experimental advances have stimulated
much theoretical activity [6–10] with the main focus on the
simplest Fermi-liquid systems [11].

Transport in one-channel quantum wires, where elec-
trons form a Luttinger liquid, differs significantly from the
Fermi-liquid case. In particular, impurity effects are
stronger in Luttinger liquids, and even a weak impurity
potential may render the linear conductance zero at low
temperatures [12]. In this Letter we investigate the ratchet
effect in Luttinger liquids. We show that strong repulsive
electron interaction enhances the ratchet current, and the
low-voltage part of the I-V curve is strongly asymmetric
even in quantum wires with weak asymmetric potentials.

We consider the ratchet effect in a one-channel quantum
wire with repulsive electron interaction in the presence of a
weak potential barrier U�x�, asymmetric with respect to
spatial inversion. We assume that electrons are spin polar-
ized and U�x� � EF, where EF is the bandwidth. We
define the ratchet current as the response to a low-
frequency square voltage wave of amplitude V, Ir�V� �
�I�V� � I��V��=2. The ratchet current vanishes for sys-
tems with symmetric I-V curves. First, we consider volt-
ages V < V0 � �hvF=�ea�, where vF is the Fermi velocity,
e the electron charge, and a the size of the region contain-
ing the asymmetric potential. We find a weak ratchet effect
in the interval eV0 > eV >

����������
UEF
p

for both Fermi and
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Luttinger liquids, Ir 
 �e=h�U2�eV�2g=E2g�1
F , where g �

1 for Fermi liquids and g < 1 for Luttinger liquids with
repulsive interaction. However, at strong repulsive interac-
tion (the Luttinger liquid parameter g� 1) and suffi-
ciently low voltages, the ratchet current Ir�V� grows as
the voltage decreases until Ir�V� becomes comparable with
the total current I�V� at eV � eV� 
 �UE�gF �

1=�1�g�. At
EF � eV > eV0 the ratchet current oscillates as a function
of the voltage and can become comparable with the total
current I�V� for any repulsive interaction strength. We also
briefly discuss the ratchet effect in the presence of a strong
asymmetric potential U > EF. The complicated ratchet-
current behavior is caused by the energy dependence of the
effective impurity strength in Luttinger liquids [12]. This
introduces an additional energy scale V� absent in Fermi-
liquid systems.

One-channel quantum wires can be described by the
Tomonaga-Luttinger model with the Hamiltonian

H �
Z
dx

�
� �hvF� 

y
R�x�i@x R�x� �  

y
L�x�i@x L�x��

�U�x���x� �
Z
dyK�x� y���x���y�

�
; (1)

where  yR and  yL are the creation operators for right- and
left-moving electrons,  y �  yR �  

y
L gives the conven-

tional electron creation operator, � �  y is the electron
density,U�x� is the asymmetric potential, and K�x� y� the
interaction strength. Our aim is to calculate the current I as
a function of the applied voltage V. We assume that the
long-range Coulomb interaction is screened by the gates so
that K�x� y� decreases rapidly for large �x� y�. Electric
fields of external charges are also assumed to be screened.
Thus, the applied voltage reveals itself only as the differ-
ence of the electrochemical potentials EL and ER of the
particles injected from the left and right reservoirs.

We assume that one lead is connected to the ground so
that its electrochemical potential ER � EF is fixed. The
electrochemical potential of the second lead EL � EF �
eV is controlled by the voltage source. In such situations a
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FIG. 1. Density profiles averaged over the period of Friedel
oscillations for a potential with U1 <U2. The averaged densities
show drops at the impurity positions.
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symmetric potential U�x� is sufficient for rectification. For
example, in a noninteracting system I�V� 


REL
ER
�1�

R�E��dE, where R�E� is the reflection coefficient. If the
only relevant scale for the energy dependence of the re-
flection probability is the bandwidth 
EF then the ratchet
current is Ir 


R
eV
0 dE�R�EF � E� � R�EF � E�� �

�2
R
eV
0 dER0�EF�E
 R�EF��eV�2=EF 
U2�eV�2=E3

F for
small U and V, and any coordinate dependence U�x�.

A ‘‘nontrivial’’ ratchet effect can be observed not only in
the setup with ER � EF, EL � EF � eV, but also when the
injected charge density is voltage independent, EL=R �
EF � eV=2. Symmetry considerations require an asym-
metric U�x� for a nonvanishing ratchet current in the latter
case. Also an electron interaction must be present. Indeed,
for free particles the reflection coefficient R�E� is indepen-
dent of the electron propagation direction [13] and hence
I�V� � �I��V�.

The ratchet effect is absent in the first two orders in
U�x�, if the injected charge density is voltage independent.
Indeed, in the lowest two orders the nontrivial ratchet
current is I�1;2�r �

R
dxC�x�U�x��

R
dxdyD�x;y�U�x�U�y�.

Since the nontrivial ratchet current is zero for any sym-
metric potential, I�1;2�r must be zero for any symmetric
potential. Substituting U�x� � U��x� x0� we find that
C�x0�; D�x0; x0� � 0. Substituting U�x� � U��x� x1� �
U��x� x2� we see that D�x1; x2� �D�x2; x1� � 0.
Hence, I�1;2�r � 0 for any U�x�.

We first consider the nontrivial ratchet effect and then
check what changes after the voltage dependence of the
injected charge density is taken into account. Let us begin
with a qualitative explanation before we make a rigorous
calculation. The origin of the ratchet current can be under-
stood from a simplified Hartree-Fock picture. In this ap-
proximation, electrons are backscattered off a combined
potential ~U�x��U�x��W�x�, whereW�x� is a self-consis-
tent electrostatic potential created by the average local
charge density. To obtain W�x� we use the follow-
ing approximation in the last term of Eq. (1):
��x���y� � � �R �x� R�x� �  �L �x� L�x�� � 

�
R �y� R�y� �

 �L �y� L�y�� � �h��x�i 
�
R �y� L�y� � h��y�i 

�
R �x� L�x� �

H:c:� � const. Thus, the relation betweenW and � is linear.
The combined potential ~U�x� is different for the opposite
voltage signs.

In the model (1) the electron interaction is short ranged
due to the screening gates, and hence, the relation between
the potential W�x� and the electron density ��x� is local,
W�x� 
 ��x�. The simplest choice of U�x� is a two-
impurity asymmetric potential U�x� � U1��x� a=2� �
U2��x� a=2�: The charge density profile [14] in the pres-
ence of a two-impurity potential and the voltage drop V is
sketched in Fig. 1. Depending on the voltage sign, the
charge density decreases or grows as a function of the
coordinate x. So does the electrostatic potential W�x�.
Hence, ~U�x� is different for the opposite voltage signs.
The density is essentially independent of the coordinate
18680
between the impurities [14], as well as on the left and on
the right of the impurities, since no backscattering occurs
in those regions. The charge density and the electrostatic
potential drop at the positions of the impurities. The mag-
nitude of a drop is proportional to the electric charge back-
scattered off the impurity. Indeed, if the incident charge
densities of the electrons approaching the impurity from
the left and from the right are �!L and � R , and the back-
scattered charge densities are � L and �!R , then the density
drops across the impurity ����!L ��

 
L ��

 
R ��

!
R ��

�� R ��
!
R ��

!
L ��

 
L ��2�� L ��

!
R �
Ibs, where Ibs is

the current backscattered off the impurity. Thus W�x� �
~U�U
 Ibs. From Ref. [12] we know that for a weak
potential U
Ibs 
 jU2kF j
2jVj2g�1 signV=E2g

F ; (2)
where U2kF 
 kF
R
dx exp�2ikFx�U�x�, kF is proportional

to the mean electron density, and the dimensionless con-
stant g characterizes the interaction strength; g � 1 for
noninteracting electrons (in which case W�x� � 0).

Now we can substitute the renormalized potential ~U �
U�W for U in Eq. (2). The Fourier component W2kF is
different for the opposite voltage signs. Hence, we obtain
the asymmetric part of the I-V characteristics Ir 

eU3jeVj4g�2=�hE4g

F �. The ratchet effect is strongest for
g! 0 when the ratchet current grows as the voltage
decreases.

The above Hartree-Fock argument provides a qualita-
tively correct picture at small g, but underestimates fluc-
tuations in Luttinger liquids. As shown below, the ratchet-
current growth at small voltages differs from our estimate:
Ir
U3jVj6g�2, EF�V>V�
�UE�gF �

1=�1�g�, g�1. We
will see that the growth terminates at V�V�. At such vol-
tage Ir�V��=I�V��
��V��3g�1=E

3g
F �=�V

��
�V�=EF�3g
1
as g� 1. Fluctuations are less important in many-channel
systems and the Hartree-Fock picture gives exact results
for some two-channel systems and for Fermi liquids.

We use the bosonization technique [15] to calculate the
ratchet current. After an appropriate rescaling of the time
variable, the system can be described by the action [12]
9-2
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S �
Z
dtdx

�
1

8#
��@t��2 � �@x��2�

� ��x�
X
n�1

2 ~U2nkF cos�n
���
g
p

�� %n�
�
; (3)

where the bosonic field � is related to the charge density as
� � e�

���
g
p
@x�� 2kF�=�2#�, and ~U2nkF exp�i%n� are of the

order of the Fourier components of the asymmetric poten-
tial, kF

R
exp�2inkFx� ~U�x�dx. We assume that the charge

density 
kF is independent of the voltage. The operator
cos�n

���
g
p

�� %n� describes scattering events involving n
electrons. We assume that %1 � 0. Indeed, we can always
set %1 � 0 by a constant shift of the bosonic field �. For a
general asymmetric potential, %n with n > 1 remains non-
zero after this shift. On the other hand, for a symmetric
potential U�x� � U��x� all %n � 0. In most problems it is
sufficient to keep only the n � 1 term. The n � 2 contri-
bution is relevant in the theory of resonant transmission in
Luttinger liquids [12]. This term is also important for the
ratchet effect.

We use the standard model [16–18] for Fermi-liquid
leads adiabatically connected to the wire. We assume that
the action (3) is applicable for jxj<L only. At large jxj the
interaction strength K�x� y�, Eq. (1), is zero. This model
can be interpreted as a quantum wire with electron inter-
action completely screened by the gates near its ends.
Electric fields of external charges are assumed to be
screened in all parts of the wire. A simple modification
of this model describes electrically neutral leads [18]. All
results coincide for our setup and the model [18].

The current injected from the noninteracting 1D regions
is given by the Landauer formula I0 � e2V=h [16]. Indeed,
left- or right-movers entering the noninteracting region
from the central part of the wire cannot affect the current
of right- or left-movers in the noninteracting region.
Hence, the current of right- or left-moving particles in
the left or right noninteracting region is determined by
the chemical potential of the left or right reservoir. The
total current is the sum [17,18] of the injected current and
the current backscattered off the asymmetric potential: I �
I0 � Ibs. Only Ibs contributes to the ratchet effect. To find
the backscattered current we employ the Keldysh formal-
ism [19]. We assume that at t � �1 there is no backscat-
tering in the Hamiltonian, and then the backscattering is
gradually turned on. Thus, at the initial moment of time the
numbers NL and NR of left- and right-moving electrons
conserve separately. Hence, at t � �1 the system can be
described by a partition function with two chemical poten-
tials 'R � EF and 'L � EF � eV conjugated with the
particle numbers NR and NL. This initial state determines
bare Keldysh Green functions.

We will consider only zero temperature. It is convenient
to switch [17] to the interaction representation H ! H �
'RNR �'LNL. This transformation induces time depen-
dence in the electron creation and annihilation operators.
18680
As a result,
P
n2 ~U2nkF cos�n

���
g
p

�� %n� in the action
should be modified as

P
n2 ~U2nkF cos�n

���
g
p

�� %n �
nA�t��, where A�t� � eVt= �h [12,17,18]. The backscattered
current operator equals [12,18]

Ibs�t� � dNL=dt � i�H;NL�= �h � ��S=�A�t�; (4)

where we omit dimensional factors such as e, �h, and vF for
brevity. We need to calculate

hÎbs�t � 0�i � h0jS��1; 0�Îbs�0�S�0;�1�j0i; (5)

where j0i denotes the initial state and S is the evolution
operator. In the weak impurity case this can be done with
the perturbation theory in ~U2nkF using the bare Green
function [15] h0j��t1; x1 � 0���t2; x2 � 0�j0i �
�2 ln��� i�t1 � t2��, where � is an infinitesimal positive
constant.

If all %k � 0 then the ratchet current is zero. Indeed, at
%k � 0 the action (3) is invariant under the transformation
�! ��, V ! �V while the current operator (4) changes
its sign. As discussed above, for an asymmetric potential
we expect %2 � 0. Then a ratchet current Ir emerges in the
order ~U2

2kF
~U4kF . Before the calculation of Ir let us deter-

mine its voltage dependence with a heuristic argument
similar to Ref. [12]. As one changes the energy scale E,
the backscattering amplitudes ~U2nkF in the action (3) scale
as ~U2nkF �E� 


~U2nkFE
n2g�1 [12]. This renormalization

stops at the energy scale V. Assuming that a scattering
matrix approach could be applied for an estimation of the
current, we write Ibs�V� 
 VReff�V�, where Reff�E� �P

const ~U2
2nkF
�E� �

P
const ~U2nkF �E�

~U2mkF �E�
~U2lkF �E� �

. . . is an effective reflection coefficient. Quadratic terms do
not contribute to the ratchet current. The leading contribu-
tion emerges in the order ~U2

2kF
~U4kF . One gets Ir 


V ~U2
2kF
�V� ~U4kF �V� 
 V

6g�2. Below we obtain the same
result rigorously from Eqs. (4) and (5).

Expanding Eq. (5) to the order ~U2
2kF

~U4kF gives, after
tedious but straightforward manipulations,

Ir�2sin%2
~U2
2kF

~U4kF

�Z 1
�1
dtd+cos�V�+� t��P���t�+�;

�+;�t��
Z 1
�1
dtd+cos�V�+� t��P�+� t;+;t�

�
; (6)

where P�t; s; q� � ��� it�2g��� is��4g��� iq��4g.
Dimensional analysis shows that Ir 
 V6g�2 in agreement
with our previous estimate. The first integral in (6) is zero
as seen from the location of the branching points of the
function P. The second integral yields

Ir � � sin%2
~U2
2kF

~U4kF cos�#g�

�
22�2g#3=2��g� 1=2�

��4g���3g�
jVj6g�2: (7)

This expression becomes 0 at g � 1=2. We also get a
zero ratchet current for noninteracting electrons, g � 1,
9-3
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because the Hamiltonian (1) is quadratic in Fermi opera-
tors in the noninteracting case and hence no operators
which backscatter more than one electron can appear,
~U4kF � 0. At small g the ratchet current (7) is proportional
to a negative power of the voltage. This denotes an unusual
behavior: the dc response to an ac voltage grows as the ac
voltage decreases.

So far we ignored the voltage dependence of the injected
charge density. At g� 1, Eq. (7) gives the main contri-
bution to the ratchet current only for eV <

����������
UEF
p

. For g
close to 1 the result (7) is always exceeded by another
contribution. This contribution emerges in the second order
in U and is related to the voltage dependence of the
injected charge density. The density is proportional to kF,
which enters the expression for U2kF in Eq. (2). At small
V � EF the correction to U2kF is a linear function of V.
The substitution of this correction into Eq. (2) gives an
additional ratchet current

I�density�r 

eU2

2kF
�eV�2g

hE2g�1
F

: (8)

For g > 1=3 and V > V� the contribution (8) always
exceeds (7). At g < 1=3 the current (8) is greater than (7)
above a threshold voltage that depends on U and g. As we
already discussed, Ir (7) is comparable with the total
current I�V� 
 e2V=h at small g near the border of the
perturbatively accessible region UVg�1=EgF < 1. On the
other hand, Eq. (8) provides only a small correction to
the total current for any g. Still a repulsive interaction of
any strength enhances the ratchet effect as seen from the
comparison of the current (8) for g < 1 and for the non-
interacting case g � 1.

What happens beyond the perturbative region when V <
V� 
U1=�1�g�? As the energy scale decreases the effective
impurity strength grows. Hence, we need to consider a
strongU > EF limit. In this limit we have a weak tunneling
between the left and right halves of the wire. The current is
I�V� 
 t2V�2=g��1=E2=g

F , where t is the tunneling amplitude
[12]. Inserting the voltage dependence of the tunneling
amplitude in the expression above we estimate Ir�V� 

V2=g.

A single impurity model (3) can be used only when the
potential U�x� is confined in a small space region of size
a < aV 
 �hvF=�eV�. If the potential changes slowly at the
scales x > aV � 1=kF it cannot backscatter electrons
since backscattering involves high momentum transfers,
k � kF. Interesting interference effects are possible for a
two-impurity potential U1��x� �U2��x� a� and other
U�x� which significantly change at the scale 1=kF but are
nonzero in a region of size a
 aV . In the two-impurity
case the current oscillates as a function of the voltage bias
[20]. For U1; U2 � EF, I � e2V=h
 �U2

1 �U
2
2 �

2U1U2 cos�2kFa�H�geVa=� �hvF���jVj
2g�1 signV, where
18680
H�x� �
����
#
p

��2g�Jg�1=2�x�=���g��2x�g�1=2� and Jg�1=2�x�
is the Bessel function of the first kind [20]. The main
contribution to the ratchet current at a
 aV comes from
the shift of kF due to the change of the electrochemical
potential of the left reservoir by eV. From the minimum of
the quadratic part of the bosonized Hamiltonian one finds
the charge density shift [21]. This gives kF � k�0�F �
g2eV=�2 �hvF�. After the substitution to the expression for
the total current I we find

Ir�V� 
U1U2 sin�2k
�0�
F a�jVj

2g�1 sin�g2ejVja=� �hvF��

�H�geVa=� �hvF��: (9)

Thus, Ir�V� oscillates. Notice that for V 
 V� � EF, a

aV� the ratchet current (9) is of the order of the total current

e2V=h.

In conclusion, we have found the ratchet current for
strong and weak asymmetric potentials. It exhibits a set
of universal power dependencies on the voltage and can
grow as the voltage decreases.

This work was supported by the US DOE Office of
Science under Contract No. W31-109-ENG-38.
9-4
[1] A. Aviram et al., Chem. Phys. Lett. 29, 277 (1974).
[2] N. J. Geddes et al., Appl. Phys. Lett. 56, 1916 (1990);

A. S. Martin et al., Phys. Rev. Lett. 70, 218 (1993); C.
Joachim et al., Nature (London) 408, 541 (2000).

[3] H. Linke et al., Science 286, 2314 (1999); A. Löfgren
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