Photonic quantum information: applications \& challenges

Andrew White
University of Queensland
(Gation) (安III

Quantum Computing:

 What is it? Why do it?

Why do quantum computing?

algorithm \rightarrow| The assertion of the Church-Turing thesis |
| :--- |
| might be compared, for example, to |
| Galileo and Newton's achievement in |
| putting physics on a mathematical basis. |
| By mathematically defining the computable |
| functions they enabled people to reason |
| precisely about those functions in a |
| mathematical manner, opening up a whole |
| new world of investigation. |

- Extended Church-Turing Thesis-foundation of theoretical
Shy do quantum computing?

algorithm \rightarrow| Cgmputer science for decades-is wrong |
| :--- |
| -Quantum mechanics is wrong |

It's entirely conceivable that quantum computing will turn out to
be impossible for a fundamental reason. This would be much
more interesting than if it's possible, since it would overturn our
most basic ideas about the physical world. The only real way to
find out is to try to build a quantum computer. Such an effort
seems to me at least as scientifically important as (say) the
search for supersymmetry or the Higgs boson. I have no idea-
none-how far it will get in my lifetime.
-Scott Aaronson, MIT, 2006

yt	Why do quantum computing?
Shor's factoring algorithm	- Extended Church-Turing Thesis-foundation of theoretical computer science for decades-is wrong - Quantum mechanics is wrong - A fast classical factoring algorithm exists All three seem crazy. At least one is true!
	Lots of mathematicians have looked and think it can't be done, and lots of maths is now based on the impossibility of doing it. - Andrew White, 2009 Computer scientists and / or Theoretical physicists and /or Mathematicians will be badly upset

- Richard Feynman recognised that simulating QM was hopeless with classical computers. Suggested using quantum systems to do an end run around the problem.
- In 1996 Seth Lloyd showed that Feymna was correct, at least for a very large class of physical systems. (In more detail: correct for Hamiltonians that are a 'sum of local interactions'.) He showed that an arbitrarily good approximation of Hamiltonian evolution could be achieved with an initial wavefunction encoded into a polynomial number of qubits, acted on by a polynomial number of logic gates. The final wavefunction would be a very good approximation to that achieved with the physical Hamiltonian.
- Well that's great, but how can we calculate some physical properties with this apporach?
- As you heard on Monday, in 2005, Alán Aspuru-Guzik showed that you could use this apporach to calculate nergy in a chemical problem, using the iterative phase estimation algorithm. Now this is good news for photonics, as we realised the phase estimation algorithm a couple of years ago for Shor's algorithm, as reported in the 2007 Review.

- Richard Feynman recognised that simulating QM was hopeless with classical computers. Suggested using quantum systems to do an end run around the problem.
- In 1996 Seth Lloyd showed that Feymna was correct, at least for a very large class of physical systems. (In more detail: correct for Hamiltonians that are a 'sum of local interactions'.) He showed that an arbitrarily good approximation of Hamiltonian evolution could be achieved with an initial wavefunction encoded into a polynomial number of qubits, acted on by a polynomial number of logic gates. The final wavefunction would be a very good approximation to that achieved with the physical Hamiltonian.
- Well that's great, but how can we calculate some physical properties with this apporach?
- As you heard on Monday, in 2005, Alán Aspuru-Guzik showed that you could use this apporach to calculate nergy in a chemical problem, using the iterative phase estimation algorithm. Now this is good news for photonics, as we realised the phase estimation algorithm a couple of years ago for Shor's algorithm, as reported in the 2007 Review.

So solving this molecule directly will require a 6×6 unitary operator to be implemented with logic gates. WAY BEYOND WHAT WE CAN DO AT THE MOMENT.
Exploit the block-diagonal structure, and just solve each 2×2 block separately.

We parameterized the Hamiltonian by the atomic separation - and calculated all the eigenvalues, using the quantum algorithm, at a range of different separations.
There are 4 eigen values, as opposed to 6 for the 6×6 hamiltonian due to some degeneracy

The Challenges
It is difficult to efficiently produce and detect single photons.
Current photonic entangling gates are inherently random
It is difficult to store photons

- Photonic QC needs single photons
- The best current apporixmation to a true single photon source is spontaneous downconversion.
- Downconversion modes with well-understood spaital and frequency properties, and excellent coupling efficiency: up to 89\% has been demonstrated (ADD reference to Franson?)
- By conditioning on detection of single photon in one mode, with high probability there is a single photon in the other ... except sometimes, there are two! Downconversion produces photon-pairs with some probability of two or three pairs occurring.
- Two-photon terms increase quadratically with power. So the brighter the downconversion source, the worse it gets as a singlephoton source.
- At first glance this isn't such a bad effect: for example, Hong-Ou-Mandel visibility drops only slightly as the power is increased nealry 10 -fold.
- However, now let's look at the output from a UQ-style optical CNOT gate. We see that higher-order terms seriously degrade the entangled-state fidelity, purity, and tangle.
- So how can we get a better downconversion source? Reducing pump power does the trick, but also reduces the count rate.

- So the first part of our solution is to reduce the power, but increase the repetition rate.
- Doubling the rate improves everything as you can see! (For 3 of these plots, each data point is from a full state tomography measurement).
- The next two steps are to multiplex these sources, and to use them to improve the performance of integratedphotonic gates, e.g. in this photo from UQ. Note that we've used the wrong wavelength laser to highlight things. You can just see the fibre on the right here, but the chips are very low-loss and you can't see the waveguides at all. (Note: you *can* nicely see the reflection of Andrew's finger and iPhone in the metal support under the chip).

It is difficult to efficiently produce and detect single photons.

Current photonic entangling gates are inherently random

It is difficult to store photons

Quantum Zeno
2004 - Franson's solution: deterministic entangling gate by combining
linear optics gates, quantum Zeno effect and nonlinear optics

1. Linear-optical gates fail by emitting 2 photons into one mode
2. Quantum-Zeno effect can suppress 2 photon events
3. Requires nonlinear interaction
e.g. universal gate: $\sqrt{ }$ SWAP

It is difficult to efficiently produce and detect single photons.

Current photonic entangling gates are inherently random

It is difficult to store photons

Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons
M.D. Lukin ${ }^{1}$ and A. Imamoğlu ${ }^{2}$
${ }^{1}$ ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridse, Massachusetts 02138 ${ }^{2}$ Department of Electrical and Computer Engineering, and Department of Physics, University of California, Santa Barbara, California 93106

Using quantum memories

Emulating quantum physics
Geometry:
concerned with spatial properties
which persist under continuous
deformations of objects

Quantum physics:
properties which persist under
continuous deformations of system
Hamiltonian
eigenstates have closed trajectories
winding in ground-state
wavefn, not undone by microscopic
details
We study ID topological phases
using quantum walks

move from one bulk to another area, e.g. vacuum, with a different topological invariant
cannot transfrom one gapped H into another without closing the gap, c.f. can't transfrom sphere to doughnut with tearing a hole.
so insulator now has significant surface condductance, protected by topology

move from one bulk to another area, e.g. vacuum, with a different topological invariant
cannot transfrom one gapped H into another without closing the gap, c.f. can't transfrom sphere to doughnut with tearing a hole.
so insulator now has significant surface condductance, protected by topology

move from one bulk to another area, e.g. vacuum, with a different topological invariant
cannot transfrom one gapped H into another without closing the gap, c.f. can't transfrom sphere to doughnut with tearing a hole.
so insulator now has significant surface condductance, protected by topology

unitvector $n \theta(k)=(n x, n y, n z)$ defines the quantization axis for the spinor eigenstates at each momentum $k, \sigma=(\sigma x, \sigma y, \sigma z)$ is the vector of Pauli matrices

Because the evolution is prescribed stroboscopically at unit intervals, the eigenvalues $\pm E \theta(k)$ of $H(\theta)$ are only determined up to integer multiples of 2π. The corresponding band structure is thus a "quasi-energy" spectrum, with 2π periodicity in energy.

Etheta energy eigenstates,
A theta are the spinor eigenstates

coin and step now rewritten in momentum space

TR follows from chiral and PH. The other CPT. So must be in top-left box, PH and TR classify, and chiral gives the flavour.

For canonical QW (using Hadamard), $Z=1$. Everyone who has done QW has done this. We want to study transition, to another Z. Modify H to allow different chiral sym.

different translations for spin-up and spin-down. Go back to syms, get this phase diagram. Blue is gap closes at pi, red is gap closes at 0 .

We can setup two distinct topological phases across the lattice

We can setup two distinct topological phases across the lattice

Emulating quantum biology

