Scalable quantum computing with neutral atom qubits Mark Saffman

Neutral atom qubits

Efficient quantum search

Experimental status

The challenge of quantum computing

The challenge of quantum computing

qubit 1

qubit 2

weak coupling to environment weak coupling to environment

Neutral atoms in optical traps

Trap depth ~ $1/\Delta$ Decoherence rate ~ $1/\Delta^2$

Long range interactions

Rb-Rb ground state magnetostatic interaction

 $\Delta E \sim 100 \ \mu \text{Hz}$

Long range interactions

Rb-Rb ground state magnetostatic interaction

Rydberg n=100 van der Waals interaction

 $\Delta E \sim 100 \ \mu \text{Hz}$

 $\Delta E \sim 100 \,\mathrm{MHz}$

12 orders of magnitude!

Rydberg atoms

Highly excited atoms with exaggerated properties.

$$< r > \sim a_0 n^2$$

 $V_{vdw} \sim n^{12}$
 $\tau \sim n^3$

Fidelity of
$$C_Z \sim 1 - \frac{a}{(V\tau)^{2/3}}$$

VOLUME 85, NUMBER 10

PHYSICAL REVIEW LETTERS

4 September 2000

Rydberg

Blockade

Fast Quantum Gates for Neutral Atoms

D. Jaksch, J. I. Cirac, and P. Zoller Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

S.L. Rolston

National Institute of Standards and Technology, Gaithersburg, Maryland 20899

R. Côté1 and M.D. Lukin2

¹Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, Connecticut 06269-3046 ²ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (Received 7 April 2000)

REVIEWS OF MODERN PHYSICS, VOLUME 82, JULY-SEPTEMBER 2010

Rydberg atom quantum information related experiments

M. Saffman and T. G. Walker Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA

Quantum information with Rydberg atoms

K. Mølmer

• ETH, Zurich

Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy, University of Aarhus, DK-8000 Århus C, Denmark

- UW Madison
- University of Connecticut
- University of Michigan
- University of Virginia
- University of Oklahoma
- Penn State
- MIT
- Georgia Tech
- Sandia National Lab
- Waterloo
- University of Heidelberg
- University of Stuttgart
- Max Planck Institute for Quantum Optics, Garching
 Technical University of Darmstadt
 - ENS Paris
- Institut d'Optique, Palaiseau
- Laboratoire Aimé Cotton, Université Paris Sud

University of Durham
Open University, Milton Keynes

University of Amsterdam

• University of Pisa

• RAS Novosibirsk

 University of Electro-Communications

Shanxi University

São Paulo

Quantum Information with Rydberg atoms

Efficient quantum search

- As with classical computing we can use universal quantum hardware to run generic algorithms.
- Nevertheless some hardware is better suited for certain tasks, (e.g. graphics accelerators,..).
- Rydberg blockade enables significant speedup for the quantum search algorithm.
- Ensemble blockade

One atom can control the state of N other atoms inside a blockade sphere.

Quantum Inf Process (2011) 10:755-770 DOI 10.1007/s11128-011-0292-4

Blockade and multi-bit gates

Multibit C_kNOT quantum gates via Rydberg blockade

L. Isenhower · M. Saffman · K. Mølmer

k control atoms and 1 target atom

If one or more control atoms is in state 0, there will be a Rydberg excitation which blocks target atom pulses

C_kNOT gate needs only 2k+3 laser pulses

Table 1 Sequential addressing C_k NOT gate errors from Eq. (2) averaged over a square lattice for several different Rydberg Cs *ns* levels

n	τ (μs)	d (µm)	<i>k</i> = 3	k = 8	<i>k</i> = 15	<i>k</i> = 24	<i>k</i> = 35
50	63	1	0.003	0.04	0.30	>1	>1
75	170	1	0.0003	0.0017	0.0071	0.026	0.078
100	330	2.13	0.0009	0.0021	0.010	0.035	0.11
125	540	3.65	0.0003	0.0024	0.011	0.039	0.12
150	820	5.66	0.0004	0.0028	0.012	0.042	0.13
E	76 A D 114			(15 00 00 1	5 10 MIL 6	1 (2.0.15	04.05

For n = 75 the Rabi frequency was set to $\Omega/2\pi = (45, 29, 20, 15, 12)$ MHz for k = (3, 8, 15, 24, 35)

Best known qu. circuit: 32k-120 gates, $k \ge 5$.

 $2^{35} \sim 34$ billion

Grover search

• Register

- Wish to find marked element
- 1) Sign change
- 2) Inversion about mean
- $\sum_{x} c_{x} |x\rangle$ $|x_{0}\rangle$ $c_{x_{0}} \rightarrow -c_{x_{0}}$

$$\overline{c} = \frac{1}{N} \sum_{x} c_{x} \qquad c_{x} \rightarrow \frac{1}{N} \sum_{x'} c_{x'} - (c_{x} - c_{x'})$$

- Factor 3 enhancement after first step.
- Succeeds with high probability after N^{1/2} steps vs. N/2 for classical search.

$$c_{x_0} \sim 3/\sqrt{N}$$

$$1/\sqrt{N}$$

$$C_{x_0}$$

sign change conditioned on all bits

being in

inversion about mean is equivalent to

Wang, Sørensen, Mølmer, PRL 86, 3907 (2001)

 $(|0\rangle + |1\rangle)/\sqrt{2}$

Scaling

- Grover iteration can be performed with 4k laser pulses, each of area π
- Alternative, simultaneous addressing scheme requires only 8 pulses/iteration
- Best known quantum circuit: 49k-149 gates, k>3.
- Error estimates:

J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 184016 (8pp)

Efficient Grover search with Rydberg blockade

Klaus Mølmer^{1,3}, Larry Isenhower² and Mark Saffman²

k=log₂(N) qubits

ts

sub-register architecture

Table 1. Errors per Grover iteration step for the different architectural approaches described in the text.								
Ν	k - 1	k	Sequential addressing	Simultaneous addressing	Quadratic speedup limit $N^{-1/4}$			
256	8			0.08	0.25			
512		9	0.004		0.21			
32768	15			0.20	0.074			
65 536		16	0.015		0.063			
16777216	24			0.28	0.016			

Experimental Status

CNOT implementation - two site experiment

Average of 146 shots. Probability of one atom in both sites about 10%.

CNOT implementation

CNOT implementation

Rydberg state Rabi oscillations

Rydberg state Rabi oscillations

Single qubit rotations

single qubit rotations by 2 photon stimulated Raman

CNOT implementation

Rydberg blockade experiment

- collaboration with Thad Walker

Isenhower et al. PRL 2010 Zhang, et al. PRA 2010

loss corrected 0.71+/-0.05

Entanglement by global addressing

Inst. d'Opt.: Wilk, et al. PRL (2010)

Summary: Rydberg mediated quantum logic experiments

Results with two qubits:

Single qubit operation	F ~ 0.95
CNOT truth table	F ~ 0.9
Entanglement fidelity	F ~ 0.7
Gate time	~ 5 μs
Coherence time	~ 40 ms
Theoretical fidelity limit	~0.001

Fault tolerance threshold (architecture dependent) .01 - .0001

Atomic Qubit Array wishlist

Single site operations without crosstalk:

- atom loading (reloading)
- fiducial state preparation
- single and two qubit gates with high fidelity
- QND Measurements (free space QND Browaeys, Chapman)
- recooling
- long coherence time
- parallel operations

special requirement – trapping of both ground and Rydberg states

Ground-Rydberg magic trapping

PHYSICAL REVIEW A 84, 043408 (2011)

Magic-wavelength optical traps for Rydberg atoms

S. Zhang,¹ F. Robicheaux,² and M. Saffman^{1,*}

Rydberg state has negative polarizability (free electron, ponderomotive potential, Raithel)

Ground state has positive polarizability for 1 micron wavelength light

Choose wavelength so also ground state has negative polarizability

Blue detuned trap with same potential for ground and Rydberg states

Single atom in BoB trap

A crossed vortex bottle beam trap for single-atom qubits

G. Li, S. Zhang, L. Isenhower, K. Maller, and M. Saffman*

Gang Li

Atomic Qubit Array

Orsay 2004

Harvard 2009

Penn State 2007

Darmstadt 2010

Munich 2011

Array of bottle traps

Array of bottle traps

Two walls between each trap

N=100 -> spacing~8 μm

Blockade distance~30 µm

9 coupled qubits

2D array of traps

One wall between each trap N=100 -> spacing~4 μm

40 coupled qubits

20 cm

Michal Piotrowicz

projected lattice, 42 sites

no sensitivity to phase drifts

long term stability

Qubit addressing

2D acousto-optic beam scanners

Kara Maller

25 scanned spots, sub μs addressing

(U. Wisconsin, Duke, AQT)

C. Knoernschild et al., Appl. Phys. Lett. (2010)

Footprint: Rb experiment 2001-2011

Rb

Next generation

Next generation

small pyrex cells

6 sides Ω/ 4π=40%

science

ion pump

2D MOT source

addressing optics, ~ 25 cm

new lasers, referenced to frequency comb

Quantum Information with Rydberg atoms

Neutral atoms are excellent candidates for scalable QIP

Multi-bit Rydberg interactions for efficient Implementation of algorithms

New technology for multi-qubit experiments

