

Jet Propulsion Laboratory

California Institute of Technology

Efficient Multiple Photon Discrimination

Limits and Limitations

William Farr

19-Jan-2012

Jet Propulsion Laboratory • California Institute of Technology

QFT 2012

Copyright 2012 California Institute of Technology. Government Sponsorship Acknowledged.

Some NASA Interest Areas for Photon Counting

- Interplanetary Ranging for Tests of Gravitation and Relativity
 - Tests of Parametric Post-Newtonian gravitational theories
 - Tests of strong and weak equivalence principles
 - Determination of planetary interiors

- Interplanetary Light Science for Tests of Fundamental Physics
 - Physics beyond the standard model
 - Tests of time variation of fundamental physics constants
- Interplanetary Optical Communications
 - To increase data volume returns and reduce spacecraft burden, as compared to present RF technologies

The Big, the Not So Good, and the Ugly

California Institute of Technology

Ideal photon counting detector performance:

Detect every photon

- 100 % detection efficiency
- Perfect photon number resolution
- Resolve photon energy too?
- No false detections
 - Zero dark count rate
 - Zero after-pulsing

- Photon energy limited bandwidth ($\Delta E \Delta t$)
 - Zero timing jitter
 - Zero recovery time
- Infinite dynamic range

Parameter		Description	Units
Quantum Efficiency	QE	Ratio of generated primary photocarrier rate to incident photon rate	% (<i>unitless</i>)
Detection Efficiency	DE	Ratio of rate of distinguishable electrical output pulses to incident photon rate	% (<i>unitless</i>)
Dark Count Rate	DCR	Rate of distinguishable electrical output pulses (at a given DE operating point) with no optical input	Hz
After-Pulsing Ratio	APR	Ratio of correlated secondary distinguishable electrical output pulses to primary distinguishable electrical output pulses (at a given DE point)	% (<i>unitless</i>)
Single Photon Jitter	SPJ	Timing uncertainty between arrival of incident photons to distinguishable electrical output pulses	S
Recovery Time	RT	Time after a photon detection event for the DE to recover to a specified fraction of the limiting (low rate, maximum) DE value	S

Some Common Photon Counting Detector Performance Metrics

QFT	2012
-----	------

- First requirement: *single photon sensitivity*
- However, with a linear system and "single" photon detectors, you do not absolutely resolve photon number*
 - In reality photon number cannot be measured at a specific time or position
 - Even with perfect detection efficiency and no noise
 - Closest approximation is true "linear" (gain) mode single photon detectors
 - Intensified Photodiode (IPD)
 - Linear mode HgCdTe with anomalous low gain variance

Reasonable proxies

- Energy resolving detectors
 - TES, x-ray (silicon PIN)
- High bandwidth photon counting
 - SNSPD, resonant SPAD
- Arrays of single photon detectors
 - "cascade" signal splitting across discrete arrays
 - "linear mode" detectors

Other major issues

- Overlap with spatial-temporal mode
 - Fiber or free-space coupling?
- Detection efficiency and gain variance

*For instance: P. Kok, IEEE Sel. Top. Quantum Electronics 9, (2003)

- Dark rate
 - Thermal, inter-band traps, tunneling
 - Ultimately limited by internal blackbody radiation of detector

"Good Enough" PNR is very application dependent

California Institute of Technology

	Super	conductor	Semiconductor					Photocathode	
	W, Ti, Nb(Ti)N,		Si, SiC, InGaAs(P), InSb, GaN,				metallic / semi-		
BSORBER		VV _(1-x) , SI _x , VaN,	Extrinsic As, B,			Intrinsic		metallic	
MC	Broken	Cooper Pairs	Non-M	Non-Markovian Impact		Photo-	Markovian	Dynode Chain /	Kinetic
GAIN			Ionization		NIF	Clonization	Micro-	Iomzation	
	Weak East			DAPD Tuppeling and / or Carrier Diffusion			External	Flectron Diffusion	
	Thermal	Phonon +	runnening and / of Carrie			Current			
RECOVERY	LINK	Inductance					Quench		
	Tra TE:	SS	Si:/	Hea Hg	Neg DA	Qu QD Ser	Gei Ph (GN SS	Ph (PN	(IPI
GN	-APD II	PD, 0	PM,	avy r CdTe	gativ edba PD, ⁻	ortu nico	iger- otodi n-AP PM, I	nto-n nT, N	VLPC, U
	onE	ondu	VLP:		e Av ck TCB	ndu SSPd	iode D, S MPP	nulti	D, F
	Edge	PD, t	C in C	/ ele	, NF	ot FE	e Av ₽AD ℃,	plie RUL	HPM
T Face	Sen	SNA	IPC	ctro	AD	Nan	alan), SP .)	Ē	T) odio
1-12	ISOF	, SN	er	n AF		owin	iche M,		de
	and the second division of the	DA		ð		Ö) all
	energy	array			linear	01055	array	array	linear
			IPD			SNSPD			DMT

PMT

QFT 2012

Pulse Energy as a Proxy for Photon Number

Jet Propulsion Laboratory

California Institute of Technology

- + Can achieve >95% DE with resonant cavity
- + Zero DCR
- KHz count rates, ~100 ns pulse widths
- < 100 mK operating temperature</p>

QFT 2012

- Generic approach: split input signal across many single photon pixels
 - Pixels can be summed digitally after discrimination (1-bit ADC), or in some cases summed in the analog domain and then discriminated with a multi-bit ADC
 - Array mitigates individual detector pixel recovery times, but not timing jitter
 - In semiconductor device arrays, optical cross-talk between pixels from photons emitted during the impact ionization gain process can be a significant noise source

Common-Anode Passive Quenched Geiger Mode Avalanche Photodiode Array

QFT 2012

- Superconducting Nanowire Single Photon Detectors (SNSPD) can combine high detection efficiency with low dark rate and GHz bandwidths
 - + > 80% DE with resonant cavities
 - + < 100 Hz dark rate is achievable
 - + < 50 ps jitter
 - > 20 ns recovery time typical due to kinetic inductance
 - < 4K operating temperature for Nb(Ti)N devices
 - < 1K operating temperature for W_(1-x)Si_x devices

The Arsenic doped Silicon VLPC detector has single photon sensitivity from 0.4 to 28 microns

- > 80% DE in the visible without optical cavity
- 1 mm diameter active area with < 30 KHz DCR
- 6 K nominal operating temperature
- Non-Markovian gain process with localized avalanche volumes permits good photon number resolution
 - Performance is limited by ~3 ms recovery time of local field reduction*

Anti-reflection

Visible Photon

0.4 μ m <1 < 1.0 μm

Coating

Transparent

Contact

Intrinsic

Region

*A. Bross et al., Appl. Phys. Lett. 85, (2004)

QFT 2012

Jet Propulsion Laboratory • Optical Communications Group for discussion purposes only

Substrate

InGaAs/InP Negative Avalanche Feedback APD

- Negative Avalanche Feedback APD's extend the local field reduction concept to > 220K operation with InGaAs(P) devices
- Further work to reduce after-pulsing is required
 - > 20% at 10 20% DE's

Jet Propulsion Laboratory • Optical Communications Group for discussion purposes only Anode

The Intensified Photodiode (IPD) uses a two-stage gain process to achieve single photon sensitivity

- Ultra-low noise gain on the order of 10³ via energetic 8 KeV electrons onto an APD anode
- Avalanche gain on the order of 10 within the high-field region of the APD

Photocathode limits device performance

- + > 200 MHz count rate per pixel
- < 30% DE
- < 100 ps with <20% DE, but jitter scales as square of photocathode thickness, whereas DE scales linearly

850-800-

450-3

400-

000-

250-

150-

50-

Jet Propulsion Laboratory • Optical Communications Group for discussion purposes only

Glass Faceplate Ceramic Vacuum Envelope

Photocathode

R. La Rue, et al., IEEE Trans. LIEC. Dev., 44, (1997)

ocusing Electrodes

Avalanche Diode

Linear mode photon counting demonstrated in 2010 by Raytheon and by DRS

- + 90% quantum efficiency at 1550 nm; >50% detection efficiency
- 1 MHz dark-count-rate, but photon emission from present amplifier is source of most of the dark counts
- Zero-field absorber region results in ~1 ns jitter
- 80K operating temperature

Proc. of SPIE, V. 8033 80330N-1

Single pixel "representative" values...

Technology	Peak DE	DCR	RT	Pulse Width	SDJ	PNR method	Relative False Count Probability DCR RT
TES	> 95%	~ 0	~ 1 ms	~100 ns		energy	~0
SNSPD	> 80%	~ 100 Hz	~ 20 ns	~10 ns	< 50 ps	array	2E-6
Si SPAD	> 50%	~ 100 Hz	~ 50 ns	~20 ns	~ 150 ps	array	5E-6
InGaAs SPAD	~ 50%	~ 100 KHz	~ 2 μs	~20 ns	~ 250 ps	array	0.2
VLPC	> 80%	~ 20 KHz	~ 100 ns / 1 mm dia.	~ 2 ns	~ 700 ps	linear	2E-3
IPD	~ 30%	~ 200 KHz	~ 1 ns pulse width	~ 1 ns	~ 200 ps	linear	2E-3
HgCdTe	> 50%	< 20 KHz intrinsic @ 80K	~ 2 ns pulse width	~ 2 ns	~ 1 ns	linear	4E-5

- Near Term (1-5 years)
 - Maturation of superconducting nanowire arrays
 - Faster TES detectors
 - Resonate-cavity enhanced semiconductor arrays
 - Monolithic hybrid semiconductor APD / FET pixels

Longer Term (5-10 years)

- After-pulsing reduction in InP/InAIAs avalanche photodiodes
- New semiconductor material systems
- Semiconductor nanowire single photon detector arrays

Blue Sky

- New photocathode concepts and miniaturized vacuum device arrays?
- "Specialty" detectors, such as direct detection of OAM?

Single Photon Detectors are still far from "good enough"

- Unless you don't mind size and "wall-plug" power, in which case superconducting nanowire detectors are rapidly maturing
- But for flight applications, NASA <u>does</u> mind "details" like size, weight, and power
- Photon Number Resolution (PNR) is only approximate
 - Can "true" PNR be achieved with future photocathode detectors?
- Progress in detector development has been, and will continue to be slow
 - Experience shows it can easily take \$5M -\$10M investment to bring a new detector technology variant to market at a useful level of performance
 - Difficult in a climate of tight technology funding
- But progress will continue, as single photon detectors are "essential" for quantum future technologies