Quantum Algorithms for Data Streams

Wim van Dam

Departments of Computer Science and Physics University of California, Santa Barbara

NASA 2012 QFT 1.0: First NASA Quantum Future Technologies Conference, NASA Ames Research Center, Moffett Field, US-CA

Thursday, January 19, 2012

Copyright 2012, Wim van Dam, UC Santa Barbara

This research is supported by the National Science Foundation

Data Streams

In the *data stream model* we have to process input that arrives sequentially and that is too large to be stored by the computer.

Cf. traditional setting where the input size N is 'small' and we can read and write the data repeatedly, and the time/space requirements are hopefully poly(N).

Data Stream Algorithms

A realistic setting when dealing with large streams of data in an online setting (like internet routers):

Copyright 2012, Wim van Dam, UC Santa Barbara

Most Frequent Element

[Alon-Matias-Szegedy'99] "For sequences $X \in \{1, ..., M\}^N$, determining the most frequent element (approximately) requires $\Omega(M)$ bits of memory."

Worst case setting occurs when M>N and almost all elements $X_1, ..., X_N$ are unique such that we have to keep track the frequencies f_j for all values $j \in \{1, ..., M\}$.

Think of routers monitoring IP addresses.

The proof uses bounds from communication complexity.

Can we do better "quantumly"?

"The Moment is Now"

Quantum Algorithms for Data Streams?

We live in a time of...

- exceptionally large data streams
- exceptionally small quantum computers

Less Quantum Memory?

Quantum algorithms on data streams:

Idea and Hope: using quantum memory to significantly reduce the memory requirements for the data stream tasks.

Arguments Con: By Holevo's theorem we know that qubits do not carry more information than classical ones.

Arguments Pro: We know that we can save memory requirements for communication complexity and for finite automata computations.

[Le Gall'06]: First exponential quantum-classical memory reduction for a specific data stream problem.

A Quantum Algorithm for **Most Frequent Item Problem?**

For a stream $X \in \{1, ..., M\}^N$ find the largest one among the M frequencies $f_i = |\{1 \le i \le N : X_i = j\}|$.

Quantumly, in one pass, we can create superpositions like these $\sum_{j \in \{1,...,M\}} |j, f_j\rangle / \sqrt{M}$

Does this give a quantum algorithm with memory requirements that are less than O(M)?

Quantum Lower Bound I

Result: the $\Omega(M)$ bound also holds in the quantum case.

Sketch of proof (rephrasing it as the Disjointness problem in communication complexity):

- Assume an algorithm with quantum memory size s.

- Assume frequencies f_j that are 0, 1 or 2.

- Let two parties A and B have 2 strings $\in \{0,1\}^M$; viewed as characteristic vectors, A and B have 2 subsets $\subseteq \{1,...,M\}$; concatenate these subsets to one string X.

- Disjointness problem for $\{0,1\}^{M}$ is solved answering: "Is there an element with frequency > 1 in the sequence X?"

Copyright 2012, Wim van Dam, UC Santa Barbar

Quantum Lower Bound II

Result: the $\Omega(M)$ bound also holds in the quantum case.

Sketch of proof (rephrasing it as the Disjointness problem in communication complexity; assume s qubits of memory):

- Disjointness problem for $\{0,1\}^{M}$ is solved answering: "Is there an element with frequency > 1 in the sequence X?"

- A runs the data stream algorithm on the first part of X, then sends her s qubits to B, who then finishes the protocol.

- By the quantum one-way Disjointness bound: $s \in \Omega(M)$.

Repeated Inputs

We did not get a quantum improvement because we had to consider the 1-way communication complexity of $Disjoint_M$.

To get the quantum improvement we have to consider the data stream equivalent of multi-round communication.

This translates into assuming repeats XX...X of the input X.

Result: Given $X \in \{1, ..., M\}^N$, on input X^k with $k=\sqrt{M}$ there exists a quantum algorithm with $O(\log M + \log N)$ qubits that solves the most frequent element problem. Classically one needs $\Omega(\sqrt{M})$ bits of memory.

Copyright 2012, Wim van Dam, UC Santa Barbara

The Quantum Advantage

For $X \in \{1, ..., M\}^N$, let $f_1, ..., f_M$ denoted the frequencies.

- Parsing the string X once, the quantum algorithm can create the superposition $(\sum_{j} |j,f_{j}\rangle)/\sqrt{M}$ of log M+log N bits.

- A quantum algorithm can find the maximum frequency f_j in \sqrt{M} queries, hence after \sqrt{M} parsings of X the quantum algorithm knows the most frequent element.

Classically, we can use the $\Omega(M)$ lower bound for the Disjointness problem for multi-round communication to show that the memory needs to be $\Omega(\sqrt{M})$ bits for any classical data stream algorithm for the same problem.

Another Result

Let the data stream be $X=g_1,...,g_N$ with all $g_j \in G$ of a (possibly non-Abelian) group G.

Identity problem: Is the product $g_1 \cdot \ldots \cdot g_N$ the identity? *Obvious solution*: Keep track of the product as you see the elements pass by; this gives a O(log|G|) upper bound.

More fancy quantum solution using representation theory: Let d_{λ} be the dimensions of G's irreducible representations. There is a probabilistic quantum algorithm that on average uses $\sum_{\lambda} d_{\lambda}^2 \cdot \log d_{\lambda} / |G|$ qubits of memory. For groups like $\mathbb{Z}/N\mathbb{Z}$ and D_N this implies O(1) qubits.

Classically, one needs $\Omega(\log|G|)$ bits [Ambainis'98].

This one is for Cris

The Quantum Algorithm

- Before starting to read the string, pick an irreducible representation λ of G with probability $d_{\lambda}^2/|G|$.

- Keep track of the representation $\lambda(g_1g_2...) \in SU(d_{\lambda})$ of the product $g_1g_2...$ using 2 log d_{λ} qubits as

 $(\lambda(g_1g_2\cdots)\otimes I)(|1,1,\rangle+\cdots+|d_{\lambda},d_{\lambda}\rangle)/\sqrt{d_{\lambda}}$

- After processing the whole string measure if the representation $\lambda(g_1 \cdot \ldots \cdot g_N)$ is the identity, or not.

- We will detect this with probability 1/2.
- Use several representations to improve success rate.

Diagram that Explains it All

