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Quantum technology ("Schroedinger's machines") 


●	 Quantum information 
(communication and computing) 

●	 Quantum metrology 
(calibration, interferometry, nanopositioning) 

●	 Quantum imaging 
(ghost imaging and diffraction, quantum litography) 



 Quantum characterization for quantum technology
 

●	 It is highly desirable to have theoretical and 
experimental tools for the precise characterization 
of signal and devices at the quantum level 



Quantum estimation
 

●	 The "resources" involved in quantum-enahnced 
metrology/technology are entanglement, nonlocality, 
entropy, interferometric phase-shift, etc.. 

In general they are not observable quantities in strict 
sense (do not correspond to a selfadjoint operator) 

● No correspondence principle 

● No uncertainty relations 



Quantum estimation
 

●	 The "resources" involved in quantum-enahnced 
metrology/technology are entanglement, nonlocality, 
entropy, interferometric phase-shift, etc.. 

Quantum 

estimation
 

theory
 



Quantum estimation


◗
 Optimal measurement

 Ultimate bound to precision 
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Measurement and estimation
 

direct measurements 
indirect measurements 

influence on a different quantity
 

◗ XS 

choice of the measurement 

choice of the estimator 



 

Cramer - Rao bound (unbiased estimators)
 

variance of unbiased estimators 

M -> number of measurements 

F -> Fisher Information 

Optimal measurement -> maximum Fisher 

Optimal estimator -> saturation of CR inequality 



 (Asymptotically) optimal estimators
 

● Bayes estimator from a posteriori distribution
 

Laplace Von Mises Th. 

● MaxLik estimator(s) from the measurement likelihood
 



                 

Let’s go quantum (1)
 

◗)
(
 
probability density


 symm. log. derivative (SLD) 

selfadjoint, zero mean 

Fisher Information
 



Let’s go quantum (2)
 

(Braunstein and Caves 1994) 
● Fisher vs Quantum Fisher 

● Quantum Cramer-Rao bound
 



Optimal quantum measurement (1)
 

● the optimal measurement is a projective one, the spectral 
measure is built with the eigenstates of the SLD 

● 
◗

optimal quantum measurement: 
SLD + classical postprocessing (Bayesian, ML) 



General formulas (basis indepedent)
 

Lyapunov equation
 

● Symmetric logarithmic derivative
 

● Quantum Fisher Information
 



General formulas 

● Family of quantum states
 

● Symmetric logarithmic derivative
 

● Quantum Fisher Information
 



Optimal quantum measurement (2)
 

ultimate bound on precision
 

(local quantum estimation theory) 

feedback assisted/adaptive measurements 

one-step adaptive procedure: rough estimate 
of the parameter on a small fraction of copies 
+ measurement of SLD on the rest of the copies 



Unitary families of quantum states
 

● covariance of SLD
 

● QFI is independent on the value of the parameter
 



parameter-based uncertainty relations 

● pure states 



parameter-based uncertainty relations
 

pure states● 

● mixed states
 



estimability of a parameter
 

● signal-to-noise ratio (single measurement)
 

● relative error for a 3σ confidence interval 
(after M measurements) 

● # of meas to achieve a given relative error
 



estimability of a parameter: the unitary case
 

●	 QFI is independent on the value of the parameter
 

●	 (Any) estimation procedure cannot be 
efficient for small value of the parameter 



A nonunitary example: estimation of loss
 

◗
Master equation
 

● absorption ● propagation in a noisy channel (T=0) 




A nonunitary example: estimation of loss 

Master equation 

◗
● absorption ● propagation in a noisy channel (T=0) 

● optimal measurement: Gaussian operations + photon count.
 

● ultimate precision
 

proportional to the loss 
parameter itself ! 



Quantum Interferometry 

use of quantum 
states of light to 
improve sensitivity 

● Optimization over input states (Caves 1981) 

● Effects of detection noise 

● Effects of losses 

● Multiple interference 

● Fixed number of particles, atomic interf 



Estimation of phase in the presence of phase diffusion 

N∆[ ! ] =
∑

nm

e−∆2(n−m)2 !nm |n〉〈m|

!φ = N∆[Uφ !U†
φ] = UφN∆[! ]U †

φ

Uφ = exp{−i a†aφ}

In the noiseless case the optimal probe is the squeezed 

vacuum and H = 8(N2 + N) (Monras 2006) 



    

Estimation of phase in the presence of phase diffusion
 

In the presence of noise we have (approximate) scaling laws
 

H(N,∆) ! k2H(N/k, k∆) βopt(N,∆) ! βopt(N/k, k∆)

Homodyning is nearly optimal 
for low and high noise 

optimized coherent 
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Experiments with coherent states (large noise)
 

Bayes estim. is optimal for small samples
 



Estimation of entanglement 

● pure states (Schmidt decomposition)
 

●	 entanglement measure: function of q 
(negativity, linear and VN entropy) 

●	 QSNR is vanishing for vanishing entanglement
 



The multiparametric case 

● QFI matrix
 

● bound on covariance
 
(not achievable)
 

●
 single parameter (achievable) 

repametrization 



Estimation of entanglement 

● different measures (negativity, entropy, distance) 
and families of states (qubit and CV) 

●	 QFI is increasing with entanglement 
QSNR diverges for maximal entanglement 

●	 Qubit: QSNR is vanishing for vanishing entanglement 

Estimation of (low) entanglement is inherently inefficient 

●	 CV: appropriate entanglement measure may achieve 
efficient estimation 

M. G. Genoni, P. Giorda and M. G. A. Paris PRA 2008
 



 

Estimation of entanglement (@INRIM) 

!ε = p|ψφ〉〈ψφ| + (1 − p)Dφ

|ψφ〉 = cosφ|HH〉 + sinφ|V V 〉
Dφ = cos2 φ|HH〉〈HH| + sin2 φ|V V 〉〈V V |

ε = p sin 2φ

optimal estimation by visibility measurements
 

Fisher information is monotone 
with entanglement 

Estimation of (low) entanglement 
is inherently inefficient 



 

Summary 

● Quantum estimation for quantum technology:
 

●	 Optimal quantum measurement in terms of SLD and 
ultimate bounds to the precision of the estimation of 
any quantity of interest including non-observables 

●	 intrinsic estimability of a parameter 

●	 classical and quantum contributions to uncertainty 

●	 Quantum estimation of nonobservable quantities 

●	 coupling constants 

●	 interferometry 

●	 entanglement 

●	 ... 
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(classical) Bayesian estimators (1) 

● Bayes theorem 

● M indipendent events: a posteriori distribution
 

● Bayesian estimator:
 

mean of the a posteriori distribution
 



(classical) Bayesian estimators (2)
 

● Laplace - Bernstein - von Mises theorem
 

● Bayes estimator is asymptotically efficient
 



MaxLik estimation
 

● Probability distribution
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Parameter estimation in quantum optics

G. Mauro D’Ariano, Matteo G. A. Paris, and Massimiliano F. Sacchi
Theoretical Quantum Optics Group, Unità INFM and Dipartimento di Fisica ‘‘Alessandro Volta,’’ Università di Pavia, via A. Bassi 6,

I-27100 Pavia, Italy

!Received 7 February 2000"

We address several estimation problems in quantum optics by means of the maximum-likelihood principle.

We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamil-

tonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of

the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applica-

tions, the Gaussian bound on statistical errors is attained with a few thousand data.

PACS number!s": 42.50.Ar

I. INTRODUCTION

In order to gain information about a physical quantity one

should, in principle, measure the corresponding quantum ob-

servable. In cases when the measurement can be directly

implemented the statistics of the outcomes is governed !in
ideal conditions, i.e., neglecting thermal, mechanical or other
sources of classical noise" only by the intrinsic fluctuations
of the observable, namely by the quantum nature of the sys-
tem under investigation. In practice, however, it is most
likely that the desired observable does not correspond to a
feasible measurement scheme, or the physical quantity does
not correspond to any observable at all. In such case one has
to infer the value of the quantity of interest from the mea-
surement of a different observable, or generally of a set of
observables. In this situation, even in ideal conditions, the
indirect parameter estimation gives an additional uncertainty
for the estimated value, and the quantum estimation theory
#1,2$ provides a general framework to optimize the inference
procedure.
In the recent years, the indirect reconstruction of observ-

ables and quantum states has received much attention.
Among the many reconstruction techniques, the most suc-
cessful is quantum homodyne tomography #3$, which, in-
deed, is the only method which has been experimentally
implemented #4$. Quantum tomography provides the com-
plete characterization of the state, i.e., the reconstruction of
any quantity of interest by simple averages over experimen-
tal data. In many cases, however, one may be interested not
in the complete characterization of the state, but only in
some specific feature, like the phase or the amplitude of the
field. Moreover, one can address the problem of characteriz-
ing an optical device, rather than a quantum state, like mea-
suring the coupling constant of an active medium or the
quantum efficiency of a photodetector. In all these cases, the
desired parameter does not correspond to a measurable ob-
servable, and contains only partial information about the
quantum state of light involved in the process. Our goal is to
link the estimation of such parameters with the results from
feasible measurement schemes, as homodyne, heterodyne or
direct detection, and to make the estimation procedure the
most efficient.
Among all possible procedures for parameter estimation,

the maximum-likelihood !ML" method is, in the sense dis-

cussed below, the most general, and widely usable in prac-
tice. The ML procedure answers to the following question:
which values of the parameters are most likely to produce
the results which we actually observe in the measurement?
This statement can be quantified, and the resulting procedure
is the ML estimation of the parameters.
Recently, the ML principle has been applied to the recon-

struction of the whole state of a generic quantum system
#5,6$. In that case the parameters of interest are the matrix
elements of the density operator in a suitable representation.
Bayesian and ML approaches have been also applied in neu-
tron interferometry #7$.
In this paper, we focus our attention on the determination

of specific parameters which are relevant in quantum optics,
and analyze their ML estimation procedure in some details.
In the next section we briefly review the ML estimation

procedure as well as the method to evaluate its precision. In
Sec. III we consider the estimation of the parameters of a
Gaussian state and of the coupling constants of a generic
quadratic single-mode Hamiltonian. As we will show, the
two estimation problems are closely related, and ML prin-
ciple leads to a fully general solution. In Sec. IV we study
different schemes of phase estimation, whereas in Sec. V the
ML principle is applied to the estimation of the quantum
efficiency of both linear and avalanche photodetectors. Sec.
VI closes the paper by summarizing our results.

II. MAXIMUM-LIKELIHOOD ESTIMATION

Here we briefly review the theory of the maximum-
likelihood !ML" estimation of a single parameter. The gen-
eralization to several parameters is straightforward. Let
p(x!%) be the probability density of a random variable x,
conditioned to the value of the parameter % . The form of p is
known, but the true value of the parameter % is unknown,
and will be estimated from the result of a measurement of x.
Let x1 ,x2 , . . . ,xN be a random sample of size N. The joint
probability density of the independent random variable
x1 ,x2 , . . . ,xN !the global probability of the sample" is given
by

L!x1 ,x2 , . . . ,xN!%"!&k!1
N p!xk!%", !1"
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● Random sample 

● Joint probability of the sample 


Maxlik estimation  ➞   take the value of  the parameters 
which maximize the likelihood of  the observed data


