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ABSTRACT  

Geospatial information systems provide a unique frame of reference to bring together a large and diverse set of data from 

a variety of sources. However, automating this process remains a challenge since: 1) data (particularly from sensors) is 

error prone and ambiguous, 2) analysis and visualization tools typically expect clean (or exact) data, and 3) it is difficult 

to describe how different data types and modalities relate to each other. In this paper we describe a data integration 

approach that can help address some of these challenges. Specifically we propose a light weight ontology for an 

Information Space Model (ISM). The ISM is designed to support functionality that lies between data catalogues and 

domain ontologies. Similar to data catalogues, the ISM provides metadata for data discovery across multiple, 

heterogeneous (often legacy) data sources e.g. maps servers, satellite images, social networks, geospatial blogs. Similar 

to domain ontologies, the ISM describes the functional relationship between these systems with respect to entities 

relevant to an application e.g. venues, actors and activities. We suggest a minimal set of ISM objects, and attributes for 

describing data sources and sensors relevant to data integration. We present a number of statistical relational learning 

techniques to represent and leverage the combination of deterministic and probabilistic dependencies found within the 

ISM. We demonstrate how the ISM provides a flexible language for data integration where unknown or ambiguous 

relationships can be mitigated.  
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1. INTRODUCTION  

Data integration and fusion are challenging user requirements, since the data and the tools required to make decisions are 

typically scattered across multiple systems and networks.  To meet these requirements, users need to be able to discover 

data and tools, and to synthesize intelligence products by taking into account the quality, reliability, and idiosyncrasies 

of particular sources and tools within the context of analysis priorities. This is an overwhelming task, even for the most 

experienced user, and it is only getting more difficult as the number and complexity of sources and tools grow.  

In this paper we outline a framework to address some of these challenges, based on Information Space Models (ISMs): 

light-weight descriptions of data sources and tools that enable scalable and probabilistic data integration. To motivate 

our approach we present a simple domain model relevant to nonproliferation in Fig. 1. This domain model defines three 

main object types, and defines relationships between these objects. The Facility object is associated with a geo-graphic 

location such as a place, factory or building. The Shipment type is associated with transportation of people, information, 

or materials between Facilities (a shipment typically involves a person or a vehicle). The Enterprise object is associated 

with known commercial, industrial or academic activities that might involve multiple Shipments and/or multiple 

Facilities. 

 

Fig. 1: The typical geospatial domain model contains multiple objects and relationships that are used by 

higher-level tools and applications to solve complex exploitation problems such as activity detection. 



 

 
 

 

Each of these objects has a set of attributes, as well as a set of relationships to the other objects. There are many different 

data sources that can be used to populate attributes for each object. Data related to Shipments and Facilities is often 

obtained from remotely sensed imagery. Data related to Enterprises might come from newspapers and other open media 

sources. Often data exploitation tools and algorithms aim to exploit one attribute of one object type. For example, 

accurate detection of material and chemical observables can provide information about the processes occurring within 

industrial facilities. The goal of data fusion is to support users in combining multiple attributes from multiple objects so 

that more complex patterns of interest can be detected.  

One of the significant challenges in exploiting multi- data source patterns is entity resolution. For example, in Fig. 2, two 

pieces of data are obtained from two different sensors that suggest that a Shipment has occurred between Facilities A and 

B. Recognizing that these two pieces of data are associated with the same real-world entity is potentially very important, 

however with additional information, it is revealed to be a false alarm. To detect complex multi- data source patterns, we 

must provide robust and dynamic mechanisms to deal with entity resolution.  

 

Our approach is to build a statistical model of the information space that describes how data sources connect to the 

domain model. There are two unique aspects to our approach: 

1. Our models focus on the characteristics of the data sources that directly influence entity resolution.  

2. We maintain a clean separation between the information space and the domain space.  

The combination leads to what appears to be a missing component in fusion research: an application independent 

framework for collective inference that supports entity resolution from heterogeneous data sources.  

2. BACKGROUND 

2.1 Making data user discoverable 

One motivation for the Information Space Model (ISM) is to provide users with a comprehensive, transparent view of 

the data and tools available to be exploited in a given time and place, for a given purpose. In the geospatial domain this 

is often called a data catalogue [2] and it uses registries of meta-data (potentially distributed across the network of 

resources) to list detailed information about: 

• The data sources that are available, relevant, and reliable 

• The types of data available from each source 

• The tools and/or applications available for analyzing the data 

In our work we use the term Information Space Model instead of data catalogue because we generalize and extend this 

idea in several key directions. First, we suggest the information space model should reference as much information as 

possible: use studies, nuances, tidbits and tricks of the trade accumulated by users of that data over time. Examples of 

this richer, more functional description of data sources might include:  

• The primary uses for the data 

• The form in which the data will be used 

• The tools available for converting the data to that form 

• The human resources available to analyze the data, if needed 

• Access restrictions and security policies pertaining to the data sources, the data, and its use. 

Second, we generalize the ISM to enable automatic discovery and integration of data sources. This second direction is 

the primary focus of this paper.  

Fig. 2: Example of the entity resolution challenge faced when integrating multiple heterogeneous data sources. This 

example is inspired by an example in [1].   



 

 
 

 

2.2 Making data machine discoverable 

Data catalogues are invaluable resources for users, however, the catalogue becomes difficult to navigate, search and 

maintain as the number and frequency of new data and tools grows. Much work therefore focuses on enriching 

representations to automate aspects of data discovery, and enable the composition of tools and services. Over the past 10 

years, a large number of standards have been proposed. Many of these standards are not specific to geospatial data 

infrastructures, but almost all, could be or have been applied in geospatial domains.  

From the business processes community, orchestration languages such as BPEL have been proposed that enable chains 

of Web Service Description Language (WSDL) services to be deployed with an orchestration engine. The semantic web 

community is also developing specifications for service descriptions (SAWDL, WSDL-S, WSDL 2) [3], and process 

descriptions (WSMO, WSML) [4]. A light-weight approach for describing services, and exposing those descriptions via 

REST services has also been proposed [5].   

There are many different standards because automating discovery and execution is a hard problem. It is difficult to 

describe a service and what it does semantically, and shoehorn that into existing standards. In addition, the approach has 

to be sufficiently expressive to support reasoning and use of rules to select services based on certain criteria, without 

being so complex that it becomes computationally impossible to integrate services into a larger task required by an 

unknown requester [6].  

2.3 Data integration 

A second approach to automating the exploitation of multiple heterogeneous data sources is data integration. In our 

work, we define a single global interface through which users (and tools) will access data sources. This approach has the 

advantage that it hides the complexities associated with data sources and tool chains from the user. The disadvantage 

compared to techniques described in the previous section is that the system services are fixed and defined ahead of time. 

As more data sources and tools come online, these services can improve, but any new services will require manual 

extension of the global interface.  

Historically, data integration techniques have focused on databases and were developed as an alternative to data 

warehousing that could provide lower-cost integration of legacy systems. There are a number of ways database schema’s 

can be mapped to a global, integrated, schema [7].  There are also a number of formal languages that have been proposed 

to describe this mapping [8], [9].  Traditionally, this mapping is performed manually. 

Given that a global interface for multiple databases can be derived, there are still many challenges to robust data 

integration. Entity matching, entity resolution, data duplication are all examples of a fundamental problem in data 

integration: identifying what data corresponds to what real-world entity. This problem arises in single datasets e.g. 

duplicate records. The problem becomes increasingly difficult (and important) as the number and diversity of data 

sources increases  [10]. This is because in addition to data ambiguity (e.g. misspelled names), there is ambiguity in the 

mapping between data sources and the global interface. 

2.4 Ontology matching 

In recent years, a large body of work related to data integration has been developed for ontology matching. In this case, 

the data sources are typically not databases, but more general graph-based data structures. Due to the large number and 

variety of ontologies that have been developed for various purposes, there is a large amount of ambiguity in how one 

ontology maps to another ontology, and this has motivated research into methods that can automatically resolve this 

ambiguity. Recent work in ontology matching draws from the combined toolkit of probabilistic and logical methods  

[11], [12].  State-of-the-art techniques in this area aim to simultaneously match the data instances (entity resolution) and 

the ontology to obtain better performance [13].    

3. INFORMATION SPACE MODELS 

The Information Space Model (ISM) can be considered a local-as-view data integration system [14]. We define a 

common interface which we call the domain model (as did [9]) and then describe how to access each data source through 

this interface (the ISM). This approach hides the content and access details of any number of heterogeneous data sources 

and / or tool chains from the user. Unlike traditional data integration, we draw from the combined statistical and 

relational toolkits and propose a data integration strategy motivated by entity matching. Unlike most approaches to 

ontology matching, we propose a clear distinction between models of data-sources (the ISM) and models of the 



 

 
 

 

application domain (the domain model). We suggest this will 

help mitigate the need for per-case integration efforts and lead to 

a more scalable approach to data integration. 

Fig. 3 provides a conceptual overview. The ISM is defined 

in terms of data instances (observations), and data sources. The 

domain model is defined in terms of entity types, and entity 

instances (real world objects).  

For example, one data source (S
1
) might be a red-light 

traffic camera, which provides observations for a specific 

vehicle, such as the vehicles’ license plate, and approximate 

vehicle tone (the traffic light camera may only record gray-scale 

images). A second data source (S
3
) might be a parking lot 

security camera, which observes a vehicles color, make and 

model (estimated with close-to-the-sensor vehicle recognition 

algorithms).  

The objective of the ISM is to describe data sources (and 

tools) in sufficient detail to populate a domain model. The 

domain model represents different entity types (e.g. T
3
 = 

vehicle) and uniquely identifies the real-world entities (e
3
 

corresponds to a unique vehicle).  Multiple data instances, 

generated from multiple heterogeneous data sources, can be 

associated with a single entity (illustrated with the dashed lasso 

that links the ISM to the domain model).  

Given a domain model, applications and analysis tools access and integrate data further. A common application is 

enhanced entity resolution (Application Model a). In this case, entity resolution would leverage the dependencies 

between the objects within the domain model to improve accuracy. Many recently proposed methods for collective entity 

resolution may be applicable [15]. A second application (Application Model b) may work directly with the domain 

model to exploit more complicated patterns, e.g., looking for multi-vehicle meetings and coordinated driving patterns. 

We do not consider applications of the domain model further in this paper. However readers interested in the vehicle 

activity detection problem that we use as an example may be interested in our review of wide-area motion imagery 

exploitation [16]. 

 
3.1 ISM template ontology 

The ISM is a light weight 

description of how data 

sources and tools relate to the 

domain model. This approach 

is similar to the template 

ontology proposed in [17] for 

bio-informatics data fusion.  

Similar to their proposal, we 

expect our model to be 

extended and adapted to 

particular situations and 

applications. In this paper we 

restrict our attention to fairly 

simple mappings between 

data sources and domain 

models, and focus on model 

parameters most relevant to 

ISM based entity resolution. 

The main objects in the ISM 

are illustrated in Fig. 4 and 

described in the next few paragraphs:  

Fig. 3: Conceptual overview of how the ISM 

interfaces to domain models and applications. 

Fig. 4: A minimal set of objects that define an Information Space Model. 



 

 
 

 

Sources: A Data Source is an abstract type for describing the context of Data Instances. Data Sources could be used to 

describe databases or sensors, they could support streaming or query based modes of operation. The primary role of the 

Data Source is to characterize dependencies between specific pieces of data that are co-collected, or related in some 

way. For example, a red light camera collects several Data Items in one observation: a time stamp, a GPS location, a 

license plate number. In another example, a database query returns multiple fields of data in each record. Each Data Item 

is uniquely identified by a Source Item type. The dependencies between Source Items are characterized by the Data 

Source.  

In some applications, the dependencies are as simple as a Coupling Strength which indicates how likely Source Items are 

associated with the same real world entity. In this paper, we will restrict ourselves to the simple case when Source Items 

defined within a Data Source are 100% coupled. This means Data Sources define indivisible groups as far as entity 

resolution is concerned.  

Another common use of the Data Source is to define attributes that are common across all Data Instances. For example, 

the license plate extraction algorithms used to estimate license plates from red light cameras may have a known 

accuracy. This would be included within the Data Source description as an Item Confidence.  

Sinks: Sink Items define the unique pieces of the domain model through which the ISM will interface. Sink Items are 

grouped into Information Sinks. Information Sinks are typically associated with domain model objects e.g. vehicles, 

facilities etc., but this is not necessary. An important attribute of Sink Items is the Uniqueness Factor. This captures how 

important that Sink Item is for comparing Data Sources. For example, a Sink Item corresponding to a license plate would 

have a high Uniqueness Factor since the data value is meant to be unique to each real world entity. However the 

Uniqueness Factor for the vehicle color would be low since many real world entities have the same color. The main 

motivation for representing the domain model with Sink Items and Information Sinks is to facilitate mapping of Data 

Sources through Use Cases.  

Use Cases:  Data Sources are linked to the Sinks through the Use Cases. It is possible that the Use Case could build on 

business process orchestration languages, or related semantic services languages, to model chains (or processes) of data 

sources and tools. In this paper we only consider a number of simple mappings: a) links between Source Items and Sink 

Items (the solid arrows in Fig. 4), b) links between Source Items and Information Sinks (the dot-dash arrow in Fig. 4), 

and c) links between Data Sources and Information Sinks (the dashed arrow in Fig. 4). It some situations, users may 

have an estimate for how certain they are in each mapping. We call this attribute a Type Confidence. Another way for 

users to represent uncertain mappings is to map a Source Item to multiple Sink Items. This case will be investigated in 

detail in Section 5.  

3.2  ISM based entity resolution 

We imagine a query begins with a 

request for particular items in the 

domain model. For example, in 

Fig. 5, a user requests all vehicle 

license plates observed over a 

particular spatial area and 

temporal period. The ISM 

contains all the Data Sources that 

reference the license plate Sink 

Item. The Data Instances 

associated with these Data 

Sources contain all the relevant 

data. However we do not know 

which Data Instances are 

associated with which vehicles: 

there could be multiple observations (Data Instances) of the same vehicle from one Data Source, and / or, multiple 

views (Data Instances) of the same vehicle from different Data Sources. We will describe several different ways to 

determine which Data Instances belong to which real-world entity. All of these are based on measuring a similarity 

between Data Instances, and the ISM provides the framework to determine how this similarity is calculated.  

Fig. 5: Example of how the ISM supports entity resolution.  



 

 
 

 

4. UNCERTAINTY IN DATA VALUES 

In some cases the ISM can be defined in sufficient detail to make similarity calculations straightforward. That is, Source 

Items that map to the same Sink Item can be compared. In Fig. 5 the two Data Sources share the Sink Item associated 

with the vehicle license plate number. A similarity score is calculated using a combination of value comparisons (Data 

Item to Data Item), and confidence parameters (described in the Data Source). If the confidence and uniqueness 

parameters described in Fig. 4 are scalars, then a reasonable similarity score for two Data Items     associated with 

Source Items     would be:  

           (   )                            (   )   (1) 

The function      (   ) depends on the data. For example, it may be a string edit distance if     are strings, or a 

Euclidean distance if they are numbers. The best match function for each source item can be specified in the Data 

Source description.  In more sophisticated systems, this match function might have to be automatically discovered or 

inferred. 

Matching two Data Instances through a single Sink Item may be possible if the Sink Item has a high Uniqueness Factor. 

But in most cases, supporting evidence will be required. The coupling of Source Items within the Data Source defines 

this additional evidence. For example, in Fig. 5 additional Source Items within each Data Source map to the same 

Information Sink (illustrated with dotted arrows). We calculate the total similarity of two Data Instances as the sum of 

similarities of all comparable Source Items:  

                 (   )  ∑           (   )*   +                 (   )    (2) 

where          (   ) indicates that Source Items map to a common Sink identifier, and are therefore comparable.  

We now consider two general solution methods for entity resolution. The first treats each candidate pair of Data 

Instances independently and simply thresholds the similarity score defined in Eq. 2. If the similarity is above threshold, 

then the two candidates are considered to be part of the same entity, or matched. 

 
           (   )  {

                       (   )    
                                               

   
(3) 

A second solution method uses collective classification. This means we introduce additional constraints between 

candidate pairs such as transitivity: 

            (   )                (   )             (   )  (4) 

Collective classification constraints such as Eq. 4 require more sophisticated machinery to optimize. We use Markov 

Logic Networks (MLN) [18]. MLN provide a unified framework for describing Markov Random Fields with 

probabilistic (Eq. 2) and deterministic (Eq. 4) dependences. In our experiments we used the Alchemy software 

implementation of MC-SAT provided by the University of Washington to generate probability estimates for Eq. 3.  

Fig. 6: Entity resolution with and without transitivity constraints for different Data Source overlaps. In all 

experiments each of 5 sensors observes Left) 3, Middle) 4, and Right) 5 of the 10 attributes. 



 

 
 

 

We implemented a number of synthetic experiments to investigate the two approaches. We generate   ground truth 

entities, where each ground truth entity has   Sink Items. We then generate   Data Sources. Each Data Source is 

assigned (randomly)   of the   Sink Items. We then generate     Data Instances by allowing each Data Source to 

observe the   Sink Items for each ground truth entity. The entity resolution methods consider every possible pair of 

instances:    (   )  candidates.  

In Fig. 6, we compare Eq. 3, with and without Eq. 4 enforced. In all cases, the number of ground truth entities and the 

number of Data Sources was 5. The ground truth consisted of 10 attributes, of which each Data Source collected data on 

3 (on the left), 4 (in the middle) and 5 (on the right). Attributes are strings drawn from alphabet of 10 values, and the 

match function is simple equivalence: 1 if the strings match and -1 if they do not. The results in Fig. 6 are averaged over 

20 trials.  

As the number of observed attributes increases from 3 on the left to 5 on the right, there is increasing overlap between 

Data Source observations (more terms in Eq. 2), and the accuracy of all methods improves. Similarity corresponds to Eq. 

3 and Transitivity corresponds to the MLN solution with Eq. 4 enforced. The TP variants correspond to the situation 

when the TypeMatch function is predicted (and therefore error-prone). We discuss the details of how this function is 

predicted in Section 5. We observe that in both cases, transitivity constraints generally improve performance. We also 

observe that for transitivity to be effective there needs to be sufficient overlap between Data Source observations. On the 

left Data Sources are linked with less than 3 attributes, and when TypeMatch is predicted (TP), transitivity offers little 

improvement. However, as the number of linked attributes increases the additional constraints can help mitigate some of 

the TypeMatch uncertainty.  

5. UNCERTAINTY IN DATA TYPES 

Information Sinks provide a global interface for multiple Data Sources. So far we have discussed situations where Data 

Items are manually mapped to specific Sink Items. However, this is often difficult, and sometimes, it may not even be 

possible. For example, in Fig. 5, our two Data Sources generate Size, Tone and Shape attributes that have not been 

defined in the domain model. To support this situation, we introduced Information Sinks – groups of Sink Items that are 

known to be related in some way. Multiple Source Items can be mapped to the same Information Sink, as illustrated by 

dotted lines in the Fig. 5. Entity resolution, and other tasks, are now much more challenging because we do not know the 

TypeMatch function in Eq. 2. In this section we investigate solutions to this problem.  

We will consider the extreme case: when all Source Items are assigned to the same Information Sink. This means any 

Source Item in the first Data Source could be comparable (or not) to any Source Item in the second Data Source. We 

investigate a two-stage approach: 1) we predict which Source Items in which Data Sources are comparable, and 2) we 

perform entity resolution with Eq. 3 to evaluate performance.   

5.1 Transitivity in types 

One way to resolve the types would be to use an approach very similar to the one we used in Section 4. For each two 

Data Sources, we measure the (type-) similarity between all potential Source Items. A natural similarity score for Source 

Items is the sum of instance similarity scores across the dataset: 

               (   )  ∑           (   )

*   +                *   +  

 
(5) 

Analogous to method 1 in Section 4, we threshold Eq. 5 to determine which Source Items in Data Source 1 should be 

matched to which Source Items in Data Source 2: 

 
         (   )  {

                     (   )    
                                               

   
(6) 



 

 
 

 

We use these predicted matches in Eq. 2 and measure performance in terms of entity resolution as before. Analogous to 

method 2, in Section 4, we can also consider constraints between TypeMatches, and specifically the transitivity 

constraints defined by Eq. 4. We implemented a number of experiments similar to Section 4 to evaluate the benefit of 

these additional constraints and summarize the results in Fig. 7.  

In all cases, there were 12 Data Sources, each observing 4 attributes of the 10 ground truth attributes. To generate the 

type predictor (TP) and type predictor with transitivity (TPT) curves we must choose the threshold in Eq. 6. In this 

experiment we evaluated all possible thresholds and selected the threshold with the best ROC curve. On the left, there 

are two ground truth entities leading to 24 Data Instances. In this case, the transitivity constraints are seen to greatly help 

the type predictors. However as the number of ground truth entities increase to 3 (in the middle) the additional value 

diminishes and in fact by 5 the performance of the classifiers is identical. On the right there are 12 truth entities and the 

performance of the classifiers is very poor (equivalent to setting Eq. 6 to 1 for all possible type combinations). We 

suggest that the poor performance of the type predictors is because the sum in Eq. 5 is dominated by terms that are not 

correct matches. Transitivity is not enough, and further constraints are required.  

5.2 A typed assignment problem 

In this section we introduce exclusivity constraints: any Source Item in one Data Source should be matched to at most 

one Source Item in the second Data Source. This constraint can be formulated as an assignment problem: given a cost 

(or profit) associated with each combination of Source Items, we find the assignment that minimizes (or maximizes) the 

cost, subject to the exclusivity constraints. Note, that unlike the transitivity constraints explored in the last section, the 

assignment problem can be solved in polynomial time with a number of different algorithms such as the Hungarian 

algorithm and Linear Programming.  

The assignment problem is used widely in data fusion and tracking. Typically, it is used to match two (or more) sets of 

observation. For example, two sets of moving object detections observed at two consecutive points in time. In our type 

matching application, we would like to find an assignment between multiple sets of Data Sources, and in addition, we 

have multiple examples (instances) of each Data Source.  This suggests a number of variations on how the assignment 

problem is used, which we collectively call a Typed Assignment Problem (TAP).  

The TAP is illustrated in Fig. 8. On the left we illustrate the typical assignment problem, where two sets of observations 

(obtained from different data sources) are matched. A cost matrix, C, is formed, where each element of the matrix is a 

cost associated with assigning specific combinations of Data Items. The assignment problem finds the lowest cost 

matching subject to the constraint that only one match can appear in each row and column. In Fig. 8 we illustrate a 

hypothetical matching with shaded squares.  

Fig. 7: Entity resolution performance using type prediction (TP) with and without transitivity constraints (TPT), 

compared against ground truth (GT) for different entity / source regimes. Left)  2 entities and 12 sources, Middle) 4 

entities and 12 sources, and Right) 12 entities and 12 sources. 



 

 
 

 

 

On the right in Fig. 8 we show an alternative assignment problem. In this case we attempt to match Source Items 

associated with each Data Source, instead of Data Items associated with Data Instances. We investigate three different 

methods.  

5.3  Instance method (TAP 1) 

Method 1 is the most similar to the standard assignment problem on the left in Fig. 8. We consider the     and     

instances of data,   ( )   ( ), obtained from two data sources,    . Each instance has a number of Data Items which we 

denote:  

   ( )  *   
 ( )   

 ( )     
 ( )+ 

  ( )  *   
 ( )   

 ( )     
 ( )+ 

  
(7) 

In method 1 we solve the assignment problem for every candidate pair of data instances independently. This means we 

form a        cost matrix where: 

  ,   -   (  
 ( )   

 ( )) (8) 

where  (   ) is defined by Eq. 1. To account for cases where Data Items in one instance are not comparable to Data 

Items in the second instance, we augment the cost matrix in the usual way: we add   additional columns to the matrix 

that correspond to the “no match” option. The cost of the “no match” is a free parameter. In our experiments we set it to 

0 (our similarity score produces *    +). After solving the assignment problem we calculate the total cost and use this 

as the EntitySimilarity in Eq. 2. For   Data Instances we solve a total of 
 

 
( )    assignment problems. 

5.4 Average method (TAP 2) 

Method 2 takes advantage of the fact that the assignment between two Data Sources does not change between Data 

Instances. We therefore solve a single assignment problem for each source pair, where each cost is accumulated across 

the entire dataset:  

  ,   -  ∑  (  
 ( )   

 ( ))

         

 
(9) 

The optimal assignment is used as the TypeMatch function in Eq.2. Note, this approach avoids having to choose the 

threshold in Eq. 6, but the cost of the “no match” assignment plays a more critical role. In TAP1, the cost is chosen with 

respect to the Similarity score between two pieces of data. In TAP2, this cost is a function of the number of assignments 

we expect over the entire dataset. We suggest that this prior knowledge is typically much harder to provide. For   Data 

Sources we solve a total of 
 

 
( )    assignment problems. 

5.5 Voting method (TAP 3) 

Our third method is motivated by the fact that for two Data Sources, not all instances correspond to the same entity. This 

means we are often trying to match Source Items where there is little or no similarity. In Section 5.1. we hypothesized 

that this was why the type predictors performed so poorly. Similar to TAP2 we propose to develop a single assignment 

for each Data Source pair. But, instead of assigning the cost based on Eq. 9, we use a weighted vote of assignments from 

each instance. That is, similar to TAP1, we solve the assignment problem in Eq. 8 for each Data Instance pair. The 

solution (or assignment) is a        binary matrix      elements  (   )    corresponding to the optimal assignment, 

Fig. 8: Left) The typical Assignment Problem associates  and Right) The Typed Assignment Problem associates Source  

    sets of Data Items.       Items (data types) within each Data Source.  



 

 
 

 

and a total cost for the assignment, which we denote     . Similar to TAP2, TAP3 accumulates a cost matrix across the 

dataset:  

 

 ,   -  ∑       (   )

      

 

 

(10) 

We calculate a final assignment with this new cost matrix, and use the solution in place of the TypeMatch function in Eq. 

2. Note, that the cost of “no match” in TAP3 is similar to TAP1. For   Data Instances we solve a total of  
 

 
( )    

  assignment problems. 

We performed another set of experiments to investigate the three approaches. On the left in Fig. 9 we have 2 ground 

truth entities observed by 12 Data Sources. Data Sources observe 4 out of 10 attributes and the results in Fig. 9 are 

averaged over 20 independent runs. Ground Truth corresponds to Eq. 3 calculated with a known TypeMatch function. 

Since the cost of the “no match” is more difficult to specify in method TAP2, we evaluated the method at 20 evenly 

spaced thresholds between -1 and 1. In the first experiment we observed very little difference between the TAP2 

solutions and the TAP3 solution, and the TAP2 solution showed small variance as the “no match” cost was varied. We 

attribute the similar performance to the fact that there are a small number of Data Instances for each Data Source pair, 

and of these matches 50% are correct. This means that the accumulated cost matrix used in TAP2 is very close to the 

instance based cost matrix when the matches are correct.  

In Fig. 9 Middle, there are 12 ground truth entities observed with 12 Data Sources. This is the same problem used in Fig. 

7 Right, where the type predictors performed very poorly. In Fig. 9 Middle, the TAP methods do a lot better. In this case, 

the cost of the “no-match” affects the performance of TAP2 significantly. There are values of this parameter that 

produce the best performance out of all methods, and values that produce the worst performance. Again, TAP3 

outperformed TAP1,  

In Fig. 9 Right, we investigate the opposite regime: there are only 2 Data Sources through which we observe 12 ground 

truth entities. We observed a similar pattern of performance to Fig. 9 Middle, but in this case all methods generally do 

better, as we would expect, since there are more examples with which to estimate type matches.  

6. DISCUSSION 

We have presented a number of techniques for mitigating value and type uncertainty in the ISM. We found that 

transitivity constraints help mitigate the partial overlap of Data Sources during entity resolution. We found that 

exclusivity constraints help mitigate the type uncertainty within the ISM, and, suggested a number of solution methods 

based on the assignment problem. The TAP 2 method can potentially provide good performance, and it only requires a 

single assignment problem to be solved. However, it requires judicious choice of the “no match” cost and this may be 

difficult in some applications. The TAP3 method is more expensive computationally, but does appear to provide a robust 

alternative to TAP2, if the per-instance “no-match” cost is easier to define. There are many additional mechanisms for 

mitigating uncertainty left to explore and many avenues to extend the ISM framework. In the next few sections we 

discuss some of these directions.  

Fig. 9: A comparison of the Typed Assignment Problem (TAP) in 3 different entity / source regimes: Left) 2 entities 

observed by 12 sources, Middle) 12 entities observed by 12 sources and Right) 12 entities observed by 2 sources. 



 

 
 

 

6.1 Collective classification  

In this paper we explored a number of collective classification constraints including transitivity and exclusivity. We 

found transitivity improved entity resolution, but was less important than exclusivity for type matching. A useful third 

experiment would be to evaluate the additional benefit of transitivity, given exclusivity is enforced. The Typed 

Assignment Problem methods we developed in this paper all run in polynomial time, whereas the transitivity constraints 

are NP hard and require approximate solutions, which are often based on Monte Carlo methods [18]. Comparing 

exclusivity to exclusivity plus transitivity would help determine if the additional computational cost was warranted. If it 

is, a possible path to more efficient solution methods is to think of transitivity constraints as a multi-dimensional (or 

multi-index) assignment problem [19]. Although this problem is also NP hard, several different approximate algorithms 

have been suggested [20] and some these may be appropriate for the Typed Assignment Problem.  

6.2 Learning  

There are many places where data could be used to learn ISM parameters. This reduces the effort required from users to 

specify the ISM, and helps improve performance by tailoring the ISM to the data. For example, a very common 

parameter to optimize in entity resolution is the Uniqueness Factor. This would be similar to the approach used for 

geospatial name matching [21], where a SVM was used to weight similarity scores of different attributes. Another 

approach, explored in [22], used learning to tailor the similarity score itself. Learning could also be used in the Type 

Prediction problem explored in Section 5 to find better costs for the assignment problems.  

A second major role of learning will be to help map ambiguous Data Items to Information Items so that they can be 

accessed explicitly by users. In this paper we developed methods to identify which Source Item in one Data Source 

could be compared to which Source Item in another Data Source. However this does not provide a meaningful identifier 

for users to query the data. User interaction is required to make this mapping, and learning, may be able to help reduce 

this interaction.  

6.3 Geospatial specializations  

In this paper we have discussed very generic models for data integration where all object attributes are treated equally. 

However in the geospatial domain we have the opportunity to exploit the specific properties of spatial and temporal 

attributes, and these attributes often provide critical constraints for entity resolution, i.e., the location and time of 

observations typically has a very high Uniqueness Factor. We suggest that most geospatial specializations can be 

included in our framework through judicious choice of match functions and parameters. However it is also likely that an 

ISM implementation for the geospatial domain would benefit from specialized indexing of the spatial and temporal 

attributes [23].  

7. SUMMARY 

We have outlined a framework for Information Space Models: a light weight description of data sources and tools for 

data integration and entity resolution. We have explored a number of techniques for mitigating uncertainty in the ISM 

based on collective classification constraints such as transitivity and exclusivity. We developed novel solution methods 

for exclusivity that run in polynomial time, based on the assignment problem.  
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