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ABSTRACT  

Ordered Hypothesis Machines (OHM) are large margin classifiers that belong to the class of Generalized Stack Filters 

which were originally developed for non-linear signal processing. In previous work we showed how OHM classifiers are 

equivalent to a variation of Nearest Neighbor classifiers, with the advantage that training involves minimizing a loss 

function which includes a regularization parameter that controls class complexity.  In this paper we report a new 

connection between OHM training and the Linear Assignment problem, a combinatorial optimization problem that can 

be solved efficiently with (amongst others) the Hungarian algorithm. Specifically, for balanced classes, and particular 
choices of parameters, OHM training is the dual of the Assignment problem. The duality sheds new light on the OHM 

training problem, opens the door to new training methods and suggests several new directions for research.  
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1. INTRODUCTION  

The linear assignment problem is one of the most famous and well-studied optimization problems in the field of 

operations research. It focuses on how best to assign a set of 𝑁 items (e.g. jobs or tasks) to a set of 𝑁 other items (e.g. 
workers or machines) [1]. Assignments are often described in terms of a permutation which uniquely maps each job to a 

worker: 

𝜑 ∶  (1,2, … , 𝑁) → (𝜑(1), 𝜑(2), … , 𝜑(𝑁)) (1) 

The permutation 𝜑 belongs to the set of all possible permutations of 𝑁 items, denoted 𝜙𝑁 , which has 𝑁! elements. In the 

linear assignment problem there is a nonnegative cost 𝑐(𝑖, 𝜑(𝑖)) associated with each potential assignment of job 𝑖 to 

worker 𝜑(𝑖), and the objective is to find the permutation that minimizes the sum of assignment costs: 

�̂� ∈  𝑎𝑟𝑔𝑚𝑖𝑛𝜑∈𝜙𝑁
∑ 𝑐(𝑖, 𝜑(𝑖))

𝑁

𝑖=1

 (2) 

Binary classification is another combinatorial optimization problem that is perhaps as famous and as well-studied as the 
assignment problem. It focuses on how to best design a classifier from training examples, an important question in the 

field of machine learning. In binary classification we are given a training set of 𝑀 points 

{(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), … , (𝑥(𝑀), 𝑦(𝑀))}, with data 𝑥(𝑖) ∈ ℝ𝐷, and labels, 𝑦(𝑖) ∈ {−1, 1}, drawn at random 

according to a probability distribution 𝑃𝑋,𝑌. The task is to find a decision function 𝐹: ℝ𝐷 → ℝ that has small error: 

𝑒(𝐹) = 𝐸𝑋,𝑌(𝑠𝑖𝑔𝑛(𝐹(𝑥)) ≠ 𝑦). 𝑃𝑋,𝑌 is unknown, but machine learning theory links this error to the empirical risk, or 

training error [2]. In its simplest form, binary classification involves choosing a function from a function class ℱ (or 

hypothesis space) that minimizes the number of mistakes: 

�̂� ∈  𝑎𝑟𝑔𝑚𝑖𝑛𝐹∈ℱ ∑ 𝑠𝑖𝑔𝑛 (𝐹(𝑥(𝑖))) ≠ 𝑦(𝑖)

𝑀

𝑖=1

 (3) 



 

 
 

 

The motivation, definition and solution methods for the two optimization problems defined by equations 2 and 3 differ in 

many ways. For example, a solution to Equation 2 can be found in polynomial time by the Hungarian algorithm, but the 

solution to Equation 3 is known to be NP hard even for relatively simple function classes such as linear classifiers.  

In this paper we show that using a convex surrogate for Equation 3 (based on the hinge loss) in combination with a 

particular choice of function class (based on Generalized Stack Filters) leads to a solution to Equation 3 which forms a 

primal-dual pair with Equation 2. In the next few sections we outline the prior work required to formalize this 
observation. In section 4 we discuss the relationship in more detail and illustrate some of the connections with synthetic 

experiments. We conclude in section 6 with a summary of future directions.   

2. LINEAR ASSIGNMENT PROBLEM 

The problem of finding the minimal cost permutation in Equation 2 can be formulated (and solved) as a {0,1}-integer 

linear program. We associate a binary variable 𝑎(𝑖, 𝑗) ∈ {0,1}  with each potential assignment of job 𝑖 to worker 𝑗, and 

𝑎(𝑖, 𝑗) = 1 indicates worker 𝑖 is assigned to task 𝑗 (i.e. 𝜑(𝑖) = 𝑗). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     ∑ ∑ 𝑐(𝑖, 𝑗)𝑎(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       ∑ 𝑎(𝑖, 𝑗)

𝑁

𝑖=1

= 1   𝑎𝑛𝑑    ∑ 𝑎(𝑖, 𝑗)

𝑁

𝑗=1

= 1   ∀𝑖, 𝑗 ∈ {1 … 𝑁} 

𝑎𝑛𝑑        𝑎(𝑖, 𝑗) ∈ {0,1}     ∀𝑖, 𝑗 

(4) 

 

One of the reasons why this optimization problem has been so widely studied is because solutions to the linear program 

relaxation, where 𝑎(𝑖, 𝑗) ∈ ℝ, 𝑎(𝑖, 𝑗) ≥ 0, can be used to find optimal solutions for the integer variables. A large number 

of solution methods have been developed for Equation 4. Table 4.2 on page 128 of [1] categorizes some of these 

methods as combinatorial, Primal-Dual (such as the Hungarian Method), Primal, Dual, shortest path, Primal simplex, 

Auction, Dual simplex, Cost scaling, Pseudoflow and Decomposition. 

2.1 Dual Solutions to the Assignment Problem 

The duality theorems define the dual optimization problem to Equation 4 as:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒     ∑ 𝑢(𝑖)

𝑁

𝑖=1

+ ∑ 𝑣(𝑗)

𝑁

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑢(𝑖) + 𝑣(𝑗) ≤ 𝑐(𝑖, 𝑗)     

(5) 

In this case we associate a real valued variable with each item defined in the two sets (jobs 𝑢 and workers 𝑣). We denote 

the variables in Equations 4 and 5 at optimality as 𝑎∗ and 𝑢∗, 𝑣∗ respectively. These solutions are linked by the following 

informal definition: 

 𝑎∗(𝑖, 𝑗) = 1       →          𝑢∗(𝑖) + 𝑣∗(𝑗) = 𝑐(𝑖, 𝑗) (6) 

That is, if in the optimal permutation there is an assignment between job 𝑖 and worker 𝑗, then the dual constraint 

involving  𝑢(𝑖) and  𝑣(𝑗) will be tight.  

3. ORDERED HYPOTHESIS MACHINES 

In previous work we developed novel solution methods for binary classification by investigating Stack Filters as the 
function class. Stack Filters are nonlinear digital filters that include the Median, Order Statistics, and Weighted Order 

Statistics as sub-classes[3]. The investigation led us to a new type of classifier, which we call Ordered Hypothesis 

Machines (OHM) [4], and we summarize some of the key components and results here.   



 

 
 

 

The first step in minimizing Equation 3 is to replace the zero-one loss function which counts the number of mistakes 

with a convex loss function:  

�̂� ∈  𝑎𝑟𝑔𝑚𝑖𝑛𝐹∈ℱ

1

𝑀
∑ 𝐿(𝐹(𝑥(𝑖)), 𝑦(𝑖))

𝑀

𝑖=1

 (7) 

where 𝐿(ℝ × {−1,1}) → ℝ . OHM classifiers use a large margin hinge loss similar to that used in Support Vector 

Machines:  

𝐿(𝐹(𝑥), 𝑦) = 𝑚𝑎𝑥(0, 𝛾 − 𝑦𝐹(𝑥)) (8) 

where 𝛾 is a free parameter (called the margin) used to balance empirical error minimization with function class 

complexity (analogous to 𝐶 in Support Vector Machines). OHM classifiers minimize this loss function for a particular 

choice of function class ℱ which can be interpreted as a Generalized Stack Filter [5]. For a detailed description of this 

function class, and how it relates to Stack Filters, and Generalized Stack Filters we refer readers to [4]. Here we simply 
state that for this function class the optimization problem in Equation 7 can be expressed as the following optimization 

problem:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑢(𝑖)

𝑃𝐶

𝑖=1

+ ∑ 𝑣(𝑗)

𝑁𝐶

𝑗=1

−  𝜆 ∑(𝑢(𝑖))
2

𝑃𝐶

𝑖=1

− 𝜆 ∑(𝑣(𝑗))
2

𝑁𝐶

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑢(𝑖) + 𝑣(𝑗) ≤  4𝛾 − ∆𝛾(𝑖, 𝑗)  

𝑎𝑛𝑑   𝑢(𝑖), 𝑣(𝑗) ≥ 0    ∀𝑖 ∈ {1 … 𝑃𝐶}, ∀𝑗 ∈ {1 … 𝑁𝐶}      

(9) 

Where 𝑢(𝑖) are variables associated with samples 𝑥(𝑖) with positive class labels (𝑦(𝑖) = 1), and 𝑣(𝑗) are variables 

associated with samples 𝑥(𝑗) with negative class labels (𝑦(𝑗) = −1). 𝑃𝐶 and 𝑁𝐶 are the number of positive and 

negative examples in the training set respectively and  𝑃𝐶 + 𝑁𝐶 = 𝑀. In addition,   

∆𝛾(𝑖, 𝑗) = max(0, 2𝛾 − 𝑑(𝑖, 𝑗)) (10) 

and 𝑑(𝑖, 𝑗) = ‖𝑥(𝑖) − 𝑥(𝑗)‖ is a distance function (such as the Euclidean distance). A geometric interpretation of this 
optimization problem is illustrated in Figure 1. Variables in the optimization problem correspond to the radius of 

partitions, centered on training examples. Maximization corresponds to maximizing each radii, up to a maximum value 

specified by 𝛾, and subject to the constraint that partitions from different classes do not overlap.   

 

 

 

Fig. 1. Geometric interpretation of the OHM classifier design problem. Left) Partitions of radius 𝛾 are centered on training examples 

and compete to cover the examples. Middle) Hypothetical solution to Eq. 9 and partitions associated with different class labels no 

longer overlap.  Right) Hypothetical solution to Stack Filter Classifier design problem which is discussed in Section 4.3.  



 

 
 

 

Once an optimal solution has been found, application of the OHM classifier to test data has a simple form, which is very 

similar to 1-Nearest Neighbor classification: 

�̂�(𝑥) = {
+1 𝑖𝑓     𝑚𝑖𝑛𝑖∈𝑃𝐶{𝑑(𝑥(𝑖), 𝑥) − 𝑢(𝑖)} <  𝑚𝑖𝑛𝑗∈𝑁𝐶{𝑑(𝑥(𝑗), 𝑥) − 𝑣(𝑗)} 

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

In fact, the only difference between Equation 11 and standard 1-Nearest Neighbor classification is the training sample 

specific offsets 𝑢(𝑖) and 𝑣(𝑗) that were found during OHM training. Further discussion and comparison of OHM 

classifiers to Nearest Neighbor classifiers can be found in [6].   

4.  RELATIONSHIPS BETWEEN CLASSIFICATION AND MATCHING PROBLEMS 

If we ignore the quadratic terms in Equation 9, Equations 5 and 9 are in fact very similar. For balanced classes (𝑃𝐶 =
𝑁𝐶 = 𝑁), and for large values of the margin parameter (𝛾 ≫ 𝑚𝑎𝑥𝑖,𝑗𝑑(𝑖, 𝑗)), 𝑑(𝑖, 𝑗)  ∝  (4𝛾 − ∆𝛾(𝑖, 𝑗)) the right hand 

side of the constraints in Equations 5 and 9 are effectively equivalent (𝑐(𝑖, 𝑗) ≡ 𝑑(𝑖, 𝑗)). To illustrate this point we 

perform a number of synthetic experiments. On the left in Figure 2 are 2-dimensional datasets, each with 𝑃𝐶 = 50 and 

𝑁𝐶 = 50 (𝑀 = 100). In the first dataset (top row) the samples are randomly drawn from overlapping Gaussians with 

means on opposite corners of the unit square and diagonal covariance 4𝐈. In the second dataset (bottom row) samples are 

draw from 4 Gaussians at all corners of the unit square (xor configuration) and diagonal covariance 2𝐈. In the middle 

plots, we show the decision surfaces obtained by optimizing Equation 9 with 𝛾 = 10 and then applying the decision rule 

in Equation 11.  

Note, there are a total of 502constraints in the linear program, which we solve with the cvx, a package for specifying and 
solving convex programs [7] [8]. On the right in Figure 2 we show the assignments that are defined by the dual. These 

pairs were identified by testing each of the 502 constraints and keeping the ones that satisfy |𝑢(𝑖) +  𝑣(𝑗) − 4𝛾 −

∆𝛾(𝑖, 𝑗)| ≤ 1 × 10−8. In both datasets there were exactly 50 constraints that satisfied this test, and as seen in the figures, 

each training sample in class 1 is assigned to exactly one training sample in class -1, indicating that the one-to-one 

constraints of the primal problem in Equation 4 have indeed been satisfied. 

 

Fig. 2. Left) Synthetic training sets of 100 samples for 2-dimensional linear (top) and xor (bottom) learning tasks. Middle) 
Decision surfaces found by training with Eq. 9 and then applying Eq. 11. Right) The pairs found with tight constraints that 

correspond to a solution of the assignment problem in Equation 4.  



 

 
 

 

Fig. 3. Top) Decision surfaces found by OHM classifier at various values of margin and Bottom) Assignments associated with 

these classifiers as the amount of regularization is decreased from left to right.  

 

4.1 Choosing Between Optimal Solutions  

One of the difference between Equations 5 and 9 are the quadratic terms. In prior work we observed that without these 
terms there were many solutions to Equation 9, and that the performance of OHM varied greatly amongst these 

solutions.  The connection to the Assignment problem sheds new light on this observation. Specifically the fact that 

linear programming relaxations of integer variables in Equation 4 are exact explains why there are many optimal 

solutions to Equation 9. For the assignment problem, solution methods often round real-valued results from the linear 

program to obtain optimal integer solutions. However, in OHM classification, this rounding affects the decision surface 

and performance of the OHM classifier. In previous work we chose between solutions by adding the quadratic terms to 

the objective functions at very small cost, e.g. 𝜆 = 1𝑥10−10. These terms select the solution where 𝑢(𝑖) and 𝑣(𝑗) have 
similar magnitude which effectively splits any slack in the constraints equally between the classes. This additional term 

was critical for OHM classifiers to perform well in experiments. However, it also meant that the optimization problem 

was transformed from a linear program into a quadratic program.  

4.2 Regularization 

One of the most important properties of the OHM approach to classification is the free parameter 𝛾 and the ability to 

control class complexity in 1-Nearest Neighbor classifiers. One of the effects of this regularization is that the number of 
exemplars (training examples) that must be memorized is reduced as the regularization is increased (this is analogous to 

the reduction to support vectors in Support Vector Machines). In its standard form, the Assignment problem does not 

include any notion of regularization. Although in the previous section we saw how the Assignment problem is equivalent 

to OHM training when it is most regularized (𝛾 is very large). In the more common case, 𝛾 is chosen through cross-

validation and is typically much smaller, and we can think of 𝛾 as modifying the Assignment problem costs. 

Specifically, the costs associated with pairs of examples with distances 𝑑(𝑖, 𝑗) >  2𝛾 are replaced by 𝑐(𝑖, 𝑗) = 𝐼𝑛𝑓  

which essentially removes their influence on the remaining assignments. We note that this can effectively reduce the 

number of items 𝑁 in the Assignment problem (and therefore the number of assignments) and can also lead to cases 

where the number of jobs is different to the number of workers. In Figure 3 we show assignments found as the value of 𝛾 



 

 
 

 

was reduced. We observe decreases in the number of assignments and the amount of training set reduction as the amount 

of regularization was decreased.  

4.3 Stack Filter Classifiers 

The function class for OHM classifiers is related to Generalized Stack Filters, but it is also possible to use Weighted 

Order Statistics [9] and Stack Filters as function classes for binary classification [10]. The optimization problem for 

Stack Filter Classifiers (SFC) is similar to Equation 9, but the variables associated with training samples and the 

constants on the right hand side of the constraints are binary {0,1}. As shown on the right in Figure 1, SFC training can 

also be interpreted geometrically. Instead of maximizing real-valued variables that represent the radius of each partition 

(as we did in OHM training), we maximize the sum of binary indicator variables that select between fixed sized 

partitions. Further details of this optimization problem are available in [10]. 

The use of binary variables and constants in the SFC design problem means that the constraint matrix for the integer 

linear program is totally unimodular, and this means that the linear program relaxation can produce optimal integer 

(binary) solutions. We observe that this problem is the dual of the maximal matching problem on a bipartite graph. When 

the margin parameter is large the SFC design problem defines a fully connected bipartite graph and a maximal matching 

can be found easily. But as the margin parameter decreases, there are smaller partitions, and therefore less potential of 

overlap, which means the bipartite graph becomes increasingly sparse and SFC training is equivalent to the classical 

combinatorial problem of finding a maximal matching in a bipartite graph [11].  

5. EXPERIMENTS WITH THE HUNGARIAN ALGORITHM 

In this section we consider how we might solve the OHM classification problem in Equation 9 with the traditional 

solution methods for the assignment problem, such as the Hungarian [12] or Munkres [13] algorithms. These are both 

examples of primal-dual solution methods. They start with a feasible solution to the dual (Equation 5) and a partial 

solution (often a single assignment) to the primal problem (Equation 4). They then iterate by finding augmenting paths 

that increase the cardinality of the matching (similar to maximal matching algorithms [11]) and then adjusting the dual 

solution to maintain feasibility. 

In our experiments we consider the restricted OHM classification problem described in Section 4. Specifically we 

consider the balanced problem where the number of training examples in class 1 is equal to the number of training 

examples in class −1, which leads to a square coefficient matrix where 𝑃𝐶 = 𝑁𝐶 = 𝑁. Also, the value of 𝛾 is set to be 

very large so that the coefficients for the assignment problem are simply the Euclidean distance between points: 

𝑐(𝑖, 𝑗) = ‖𝑥(𝑖) − 𝑥(𝑗)‖. With these choices, OHM classification and the assignment problem are equivalent, however 
there are still multiple solutions to the optimization problem (described in Section 4.1) which is problematic for 

classification. In OHM this was addressed by introducing quadratic terms into the dual solution. However this 

transforms the problem into a quadratic programming problem.  

An alternative approach, that might be a better match for the primal problem, is to be more explicit about our class priors 

and introduce class (or even sample) specific coefficients into the two sums in Equation 5. This weighted version of the 
assignment problem relaxes the bijection constraints and enables each job to be assigned partially to a number of 

workers. This generalization is known as the Transportation problem and typically has a much smaller set of optimal 

solutions compared to the Assignment problem.  

 

5.1 Obtaining Different Dual Solutions 

In this paper we investigate an alternative which was inspired by the analysis of dual solutions presented by Kindervater 

et.al. [14]. They provide an algorithm which can generate 2𝑁 solutions to the assignment problem. The key observation 

is that a reduced assignment problem comes into play: remove one agent 𝑎 and then calculate the total cost �̃�𝑎𝑏 of the 

new problem where task 𝑏 is removed from the list, doing this for every task 𝑏 ∈ {1 … 𝑁}. The optimal assignment is 

given by a permutation 𝜎 of {1 … 𝑁}, and has cost 𝑧 = ∑ 𝑐(𝑖, 𝜎(𝑖))𝑁
𝑖=1 . The increase in cost over the optimal cost if agent 

𝑎 is assigned to task 𝑏 is given by Equation 12.  

ℎ𝑎𝑏 = min {∑ 𝑐(𝑖, 𝜋(𝑖))

𝑁

𝑖=1

|𝜋 𝑖𝑠 𝑎 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝜋(𝑎) = 𝑏 } – 𝑧 (12) 

Observing that  



 

 
 

 

min {∑ 𝑐(𝑖, 𝜋(𝑖))

𝑁

𝑖=1

|𝜋 𝑖𝑠 𝑎 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝜋(𝑎) = 𝑏 } = 𝑐(𝑎, 𝑏) + �̃�𝑎𝑏  

we can write ℎ𝑎𝑏 − 𝑐(𝑎, 𝑏) = �̃�𝑎𝑏 − 𝑧.  Theorem 2 in [14] states: let 𝑎 be any given index in {1 … 𝑁}, then an optimal 

dual solution is given by: 

(𝑢𝑎(𝑖), 𝑣𝑎(𝑖))  = (𝑐(𝑖, 𝜎(𝑖)) − 𝑐(𝑎, 𝜎(𝑖)) + ℎ𝑎𝜎(𝑖), 𝑐(𝑎, 𝑖) −  ℎ𝑎𝑖) for 𝑖 ∈ {1 … 𝑁}. 
With our notation this can be rewritten as: 

(𝑢𝑎(𝑖), 𝑣𝑎(𝑖)) = (𝑐(𝑖, 𝜎(𝑖)) + �̃�𝑎𝜎(𝑖) − 𝑧, 𝑧 − �̃�𝑎𝑖) = (�̃�𝑎𝜎(𝑖) − �̃�𝑖𝜎(𝑖), 𝑧 − �̃�𝑎𝑖).  (13) 

This specifies 𝑁 different solutions for the dual problem, one for each choice of row 𝑎. The solutions differ in that 

𝑢𝑎(𝑎) = 0 for each choice of 𝑎. An additional 𝑁 solutions can be found by applying a similar procedure to the columns, 

in which case 𝑣𝑏(𝑏) = 0 for each choice of 𝑏.  

 

5.2 Averaging Dual Solutions 

In terms of OHM classification, each of the solutions found by the method described in Section 5.1 is biased towards one 
class depending on whether the method is applied to the rows, or to the columns. One way to obtain a more symmetric 

solution is to average the value of the dual variables across the 2𝑁 solutions, which is described by Equation 14.    

(𝑢∗(𝑖), 𝑣∗(𝑖)) = (
1

2𝑁
(∑ 𝑢𝑎(𝑖)

𝑁

𝑎=1

+ ∑ 𝑢𝑏(𝑖)

𝑁

𝑏=1

) ,
1

2𝑁
(∑ 𝑣𝑎(𝑖)

𝑁

𝑎=1

+ ∑ 𝑣𝑏(𝑖)

𝑁

𝑏=1

) )  (14) 

In experiments, the values of the dual variables found by Equation 14 were found to be identical to the values found by 

solving the dual problem with the quadratic terms described by Equation 9 (to a constant offset). The identical decision 

surfaces associated with these classifiers are shown on the left in Figure 4 for the linear (top) and xor (bottom) problems 

used in Section 4. We compare these to the biased solutions which average solutions from just the rows (Equation 15) or 

just the columns. Decision surfaces associated with these solutions are illustrated in the middle and right of Figure 4.  

(𝑢∗(𝑖), 𝑣∗(𝑖)) = (
1

𝑁
∑ 𝑢𝑎(𝑖)

𝑁

𝑎=1

,
1

𝑁
∑ 𝑣𝑎(𝑖)

𝑁

𝑎=1

 ) (15) 

6. SUMMARY 

This paper has shown that for certain function classes binary classification and the Assignment problem are intimately 

related, and under certain conditions the two problems form a primal-dual pair. This observation means OHM training 

can potentially benefit from the wide range of solution methods and problem generalizations that have been developed 

for assignment problems. We gave an example of this by adapting a procedure that uses the Hungarian method to find a 
set of degenerate solutions to the dual problem. In practice, the efficiency of this approach is not competitive with direct 

solution of the dual problem with a standard solver. However we believe further work, particularly in the area of 

incremental (or online) solvers to the assignment problem, may prove more competitive [15]. 

The observations made in this paper may also benefit applications and methods beyond OHM. The SFC integer linear 

program described in Section 4.3 is a fairly straightforward adaptation of the original Stack Filter integer linear program, 

which was used to design filters to minimize Mean Absolute Error (MAE) [3]. In the original work, the linear relaxation 

of the MAE design problem was shown to be tight (due to the fact that the constraint matrix is totally unimodular) and 

this contributed to much activity in Stack Filter design and related non-linear filter classes over the years. In the MAE 

problem, variables do not fall naturally into two sets as they do in binary classification and therefore the connection to 

maximal matching on bipartite graphs is not clear. However, an interesting topic for future work is to investigate 

connections between MAE optimization and matching problems on more general graphs. Matching on general graphs 

has also inspired much historical and recent work [16] [17] and there may be opportunities to improve solution methods 
for non-linear signal processing. 
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