
Improving multiple target tracking in structured
environments using velocity priors

Rohan C. Loveland, Edward Rosten, and Reid Porter

Los Alamos National Laboratory, Los Alamos, NM, USA

ABSTRACT

In this paper, we present an algorithm for determining a velocity probability density prior from low frame rate
aerial video of an urban area, and show how this may be used to aid in the multiple target tracking problem,
as well as provide a foundation for the automated classification of urban transportation infrastructure. This is
partially motivated by the difficulty of solving the multiple target tracking problem in instances with small targets
and low sample rates. The utility of appearance cues is decreased in those circumstances where the targets are
nearly identical, or appear to be so due to low sensor resolution relative to the overall system parameters. The
performance of tracking methods based on motion models relying on target trajectory smoothness is similarly
decreased when the sensor sampling rate is low relative to the target motion parameters. If the tracking is
occurring in a structured environment, however, such as in the urban car tracking problem, some performance
may be regained by incorporating prior knowledge of that environment into the tracking model. The velocity
prior provides a means of describing this environmental knowledge.

Keywords: tracking, video, traffic, urban, transportation

1. INTRODUCTION

The increasingly widespread availability of high-resolution video sensors, coupled with improvements in accom-
panying storage media, processors, etc... have made the collection of aerial video for the purposes of tracking
automobiles and monitoring traffic much more feasible in recent years.1 Corresponding efforts for the acquisition
of aerial video imagery of traffic data using helicopters for the flight platform have been conducted by Angel and
Hickman,2 and Hoogendoorn.3 More recently, a data collect has been conducted in a joint effort between Los
Alamos National Laboratory (LANL) and the University of Arizona, a frame of which (overlaid on a GoogleMaps
image), is shown below in Fig. 1.

It is often desirable when collecting such video data to maximize the area covered. Unfortunately, limitations
on storage/communications bandwidth and sensor resolution result in trade-offs between this and other system
parameters. In those cases where maximum area coverage is a strong driver, the number of pixels on target, and
the sampling rate, will both tend to be low. This in turn tends to reduce tracking performance, in that virtually
all tracking algorithms are based on either: 1) appearance cues, which require enough pixels on target so that
neighboring targets are distinguishable, or 2) smooth trajectory assumptions, which are broken if sampling rates
fall too low with respect to the underlying spatial frequencies of the target trajectories.

In some environments, however, underlying rules apply to the target trajectories such that prior knowledge
can be utilized to aid in the tracking process. In urban environments in particular, such rules are reflected by
the existence of restricted regions (i.e. cars don’t drive through walls), as well as high probabilities of certain
speeds and directions of travel in allowed regions (i.e. traffic lanes have directions and speed limits).

In the following, we outline an algorithm that effectively allows the inference of these rules by building up a
probability density function of the velocity at each pixel in the scene. This is done using track fragments, and
takes advantage of the extremely high amount of information available to allow the application of a primitive
association algorithm, from which only a relative few, high confidence track fragments are retained to build up
the velocity probability densities. We then present the results and discuss how this provides advantages not only
for future tracking algorithms, but also insight into the transportation structure of the urban environment.

Further author information: (Send correspondence to R.C.L.)
R.C.L.: E-mail: rohan@lanl.gov, Telephone: 1 505 667 4892

Figure 1. This shows a frame of imagery taken from the helicopter transparently superimposed over a region of the same
image acquired from GoogleMaps. The region in the green box on the left is shown zoomed in on in the image on right.
The irregular boundaries of the image are due to the radial distortion correction and registration processes.

2. DATA

The data used is the joint LANL/UofA data mentioned previously. A frame of this is shown above in Fig. 1.
In this paper we use a 1024x1024 gray-scale central portion of the data to illustrate the algorithm. A brief
description of some of the data parameters is given below.

Table 1. Data Parameters.

Original Image Size 2560x1920 pixels

Sampling Rate ∼ 5 frames/second

Spatial Resolution ∼ 0.75 ft./pixel

Helicopter Height (AGL) ∼ 3000 ft.

Field of View ∼ 70◦

Misregistration Jitter up to 15 pixels/frame

The original image size is large enough to be computationally difficult, so for the results shown below a
1024x1024 central section was used, decimated by a factor of 2 to reduce size and improve car detection results.
The misregistration jitter is particularly notable - this can cause a car to seemingly move its entire length in
1/6th of a second, corresponding to ∼ 60 mph jumps between frames. The jitter is 0 drift, however, and so
skipping frames partially ameliorates this problem, as does using the central portion of the image where the jitter
is less. For this reason the prior is calculated in frame pairs with 2 frames skipped in between. The combined
effect reduces the inter-frame jumps to ∼ 20 mph. The overall effect of the jitter is to 1) introduce noise into
each track fragment, and 2) blur the velocity probability density locations. The jitter is the result of sudden
shifts in helicopter pose, combined with the the camera having a ‘rolling shutter’. We can infer from the jitter
magnitude that the helicopter pose variations ranged up to 5 milliradians between frames.

3. ALGORITHM

The goal of the algorithm is to build up a velocity probability density for every location (i.e. pixel) in the imagery.
The velocity probability densities may be used as priors, in the Bayesian sense, for individual car tracking, so

we’ll refer to the aggregration of them over the entire image as the ‘prior’. The prior at any given pixel location
is represented with a polar histogram, with 5 speed bins along the radial axis, and 8 direction bins at the various
angles. (see Fig.4 for an illustration)

The prior is built up, over all available pairs of frames, by:

1. Car Detection - finding the locations of all objects that look like cars,

2. Car Association - finding track fragments in a pair of frames (so matching a car’s location in the first
image with its location in the second),

3. Track Filtering - filtering out all but the few track fragments for which the confidence of correct association
is high,

4. Track Interpolation - for each remaining track fragment, determining the corresponding velocity and
locations the car passed through,

5. Histogram Accumulation - incrementing the appropriate velocity bin in each histogram of those loca-
tions.

Each of these steps is explained further in a subsection below.

3.1 CAR DETECTION

The car detection process is difficult given the available level of spatial resolution. Fortunately, motion filtering
can be used to compensate for the initial inclusion of a large number of false alarms. The car detection algorithm
used here is correspondingly non-specific, being the Difference of Gaussian (DoG) based multi-scale blob detector,
as described and implemented by Lowe.4

In brief, the detector convolves the standard centered 2-D Gaussian:

G(x1, x2, kiσ) =
1

2π(kiσ)2
exp−(x1

2+x2
2)/(2(kiσ)2) (1)

over an image I(x1, x2) at varying scales of kiσ, producing,

L(x1, x2, kiσ)≡G(x1, x2, kiσ)∗I(x1, x2) (2)

The differences between these convolved images are then taken (hence the DoG nomenclature).

D(x1, x2, ki, kj , σ)≡L(x1, x2, kiσ)− L(x1, x2, kjσ) (3)

This produces a 3-D structure in scale-space (i.e. in (x1, x2, k)). All local maxima and minima of this 3-D
structure are then found by comparing each point with it’s 26 neighbors (i.e. 9 above, 8 in the same k-plane,
and 9 below), and each of these scale-space extrema is taken as the center of a blob with an associated scale of
k.∗ Intuitively, this process can be viewed as convolving matched filter masks to the imagery at different scales,
with the strongest responses being found where the underlying image points are most similar to the masks. The
masks themselves are differences of 2-d Gaussians , which is to say circular with positive centers and negative
surrounds (i.e. the ‘mexican hat’).

An argument can be made for a fairly rigid scale filter on the blob sizes, since most cars are quite similar in
size. In practice, however, it is empirically found that many of the locations found on cars are smaller than the
actual car size, so that only an upper limit on scale is used. A zoomed in version of the corresponding results of
the scale-filtered blob detector are shown on the left side of Fig. 2. The high number of false alarms is apparent.

These are reduced through motion filtering. Points which are stationary provide no contribution to the
histogram accumulation, since the initial assumption is that all points in the image are stationary. The car
∗The algorithm contains some refinements beyond what is described here; see Lowe4 for a complete description.

detection hits are accordingly filtered using dithered normalized cross-correlation, centered on the location in
the first frame.

In more detail, this is accomplished by:

1. getting a car-sized template of pixels from the neighborhood surrounding the blob location in the first frame,

2. getting a second same-sized template from the neighborhood surrounding that same location in the second
frame,

3. calculating a normalized cross-correlation (NCC) score, as described in eqn. 5,

4. repeating this for a neighborhood of locations in the second frame surrounding the original location (i.e.
‘dithering’ the first template),

5. finding the the maximum NCC score from this dithered neighborhood (i.e. the best match),

6. filtering out those blobs with a sufficiently high matching score.

Normalized cross-correlation is a standard means of template matching in computer vision.5–7 Formally, a
square template centered at ~x, of side length s, taken from image I, can be defined as:

T~x,s,I = {I(x1 − k, x2 − l)|~x ≡ [x1, x2]T , k, l ∈ [−s/2, s/2]}. (4)

Argument s is uniformly set to a car-sized 15 pixels, and is omitted from here on. The templates can be
normalized by subtracting their respective means µT and standard deviations σT , with the normalized cross-
correlation then defined as:

NCC(T1, T2) =

∑
k,l(T1(k, l)− µT1)(T2(k, l)− µT2)

σT1σT2

(5)

where T1 is understood to be T ~xa,I1 and T2 is understood to be T ~xb,I2 , where ~xa is the (fixed) blob location in
the first frame and ~xb is allowed to vary in the second.

We now find
~xb
∗ ≡ arg max

~xb

NCC(T ~xa,I1 , T ~xb,I2) (6)

where ~xb ranges over a region centered on ~xa that is determined by jitter magnitude - in this case set to a radius
of 10 pixels. Finally, we reject all blob locations where NCC(T ~xa,I1 , T ~xb

∗,I2) > k, where k is a manually selected
matching threshold. This procedure effectively eliminates those blobs that have a good match in the second
image in roughly the same location. This is repeated in reverse (i.e. switching the roles of frames 1 and 2) for
additional robustness. Fig. 2 shows the results of this on the right; most of the remaining car detector hits are
on the street, though in the full (unzoomed) image some obvious false alarms (e.g. on the roofs) remain.

3.2 CAR ASSOCIATION

After the stationary cars have been filtered out a list of car locations is left for frame 1 and frame 2. Given that
the sequential frames don’t have much rotation or scale change between them, we reuse the image templates
described above in eqn. 4 for descriptors. Some examples of the templates are shown in Fig.3. The descriptor
of a given car in frame 1 is compared to all of the cars in frame 2 that are within the possible movement limit,
assumed here to be a maximum of 100 pixels/second, corresponding to ∼75 mph, with the best match chosen
for the association. Rather than using the NCC score for comparison, the template descriptor is viewed as
high-dimensional vectors. Following Lowe’s4 SIFT work, a matching function, m(...), is then defined using the
arccosine of the dot products of the descriptors as an approximation to the Euclidean distance between the
vectors,

| ~T1 − ~T2| ' m(~T1, ~T2) ≡ arccos(~T1 • ~T2). (7)

Figure 2. On the left of the figure a zoomed in part of the image is shown with the unfiltered hits from the blob detector
marked with red circled crosshairs. The circle sizes are proportional to the scales of the corresponding blobs. The right
side shows the hits filtered both by scale and motion.

Figure 3. This shows examples of some of the car template descriptors (i.e. regions taken from the image neighborhoods
centered on the car detector locations).

3.3 TRACK FILTERING

The possible matches are then sorted by score, and a match is only accepted if the ratio between the 1st and
2nd best matches is greater than a threshold of 0.6†. This ensures that the only matches accepted are those for
which the confidence is high, due to the enforced low ambiguity. This consequently throws away a great number
of correct matches. This is acceptable because the extremely large amount of information available will allow it.
The ultimate result of this and the other filtering steps is to reduce some 3,500 original blob detector hits (on
average) down to about 10 tracks retained per frame pair.

3.4 TRACK INTERPOLATION

Each track fragment specifies only the endpoints of the car trajectory, which is to say, where it started in frame
1 and ended up in Frame 2. We assume a constant velocity between these locations, so that each track fragment
k has a corresponding speed sk and direction dk. We then calculate a set of points Nk, defined to include
those pixel locations passed through between the endpoints of track fragment k, expanded to further include
approximately a half car width of points on both sides of the track fragment.
†this fairly sensitive parameter is left at the value set by Lowe

Figure 4. This shows the zoomed in center of the video data that the velocity prior was generated from on the left. On
the right we have the polar histogram priors at 4 particular locations, with the red arrows showing the parts of the image
that the histograms correspond to.

3.5 HISTOGRAM ACCUMULATION

A four dimensional data structure, Px̃,d,s, is then allocated to accumulate the information from the track frag-
ments. Let the total number of track fragments be K. Then we build up the histograms at each pixel by
incrementing

Px̃,dk,sk ⇐ (Px̃,dk,sk + 1) ∀ ~x ∈ Nk, k ∈ [1,K]. (8)

This results in the building up of a 2-D (speed,direction) histogram at every point ~x that any track fragments
pass through.

4. RESULTS

The results of building up the velocity prior can be viewed in several different ways. Fig. 4 shows the polar
histograms at 4 different pixel locations, with red arrows indicating the particular pixel locations that each
histogram corresponds to. The directions of the polar plots are oriented the same as the plot on the left, while
the radii of the bins indicate speed, with the outer ring being the fastest. The colors show the number of counts
in each of the bins, with the scale being shown by the accompanying color bars on the right of the histograms.
Red is highest and dark blue is lowest.

Knowing that traffic rules include driving on the right for Tucson, the histograms indicate what one would
expect for each of the locations in question, though the inclusion of some counts due to incorrect track fragments
can also be seen. The upper left and upper right histograms show east-bound and south-bound streets, and have
dark red peaks clearly indicating this. The lower left histogram with the yellow west-bound peak and the red
south-bound peak also shows what one would expect to see in that particular part of the intersection. The lower
right histogram is clearly the most complex, with east-bound traffic going straight, as well as south-bound left
and u-turners.

An alternative way of viewing the data is to find the mode of each histogram at each location, resulting in
numbers representing the most common speed and direction at each location. The results of this are shown in
Fig. 5 and Fig. 6. The speeds look correct, and show that drivers tend to leave intersections faster than they
approach them. The directions also look correct, in that the opposite sides of the road have opposite colors.
This view also reveals the large number of incorrect track fragments that passed the filters.

These results were generated using 1126 frames, corresponding to about about 3 1/2 minutes of video. Ob-
viously, a more complete velocity prior can be built up using more data.

Speeds in mph

Figure 5. This shows the results of taking the mode of the velocity prior at each location and plotting the speed. The bar
on the right shows the speeds in mph that the colors correspond to.

5. CONCLUSION

The results are encouraging in that they match what we would expect based on our knowledge of traffic regulations
and structure. It is clear that false matches and jitter both degrade the velocity prior; we hope to address both of
these issues in future work, as well as to use more of the available data both spatially and temporally. The prior
is expected to be useful in tracking applications, where the prior may be used to restrict searches to drivable
areas and to assign higher probability to matches that are in accordance with lane directions. The prior may
also be used to gain information about urban transportation infrastructure and traffic flow.

ACKNOWLEDGMENTS

The cooperation and encouragement of Drs. Mark Hickman and Pitu Mirchandani of the University of Arizona
is very gratefully acknowledged. Thanks also to Dr. David Lowe of the University of British Columbia for
making his SIFT code available online. Partial funding for the data collection and reduction for this effort has
been supplied by Los Alamos National Laboratory, the National Nuclear Security Administration, and the U.S.
Department of Energy.

REFERENCES
1. R. Kumar, H. Sawhney, S. Samarasekera, S. Hsu, H. Tao, Y. Guo, K. Hanna, A. Pope, R. Wildes, D. Hirvonen,

M. Hansen, and P. Burt, “Aerial video surveillance and exploitation,,” Proceedings of the IEEE 89 no. 10,
pp. 1518–1539.

2. A. Angel, M. Hickman, P. Mirchandani, and D. Chandnani, “Methods of traffic data collection, using aerial
video,,” Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems 89 no.
10, pp. 31–36, 2002.

Figure 6. This shows the results of taking the mode of the velocity prior at each location and plotting the direction. The
pie on the right shows the directions that the colors correspond to.

3. S. Hoogendorn, H. Van Zuylen, M. Schreuder, B. Gorte, and G. Vosselman, “Microscopic traffic data collection
by remote sensing,,” Transportation Research Board Annual Meeting CD-ROM , 2003.

4. D. Lowe, “Distinctive image features from scale-invariant keypoints,” in International Journal of Computer
Vision, 20, pp. 91–110, 2003.

5. D. Ballard and C. Brown, Computer Vision, Prentice-Hall, New Jersey, 1982.
6. R. Gonzalez and R. Woods, Digital Image Processing (3rd Edition), Addison-Wesley, Reading, Mass., 1992.
7. R.Duda and P.Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.

