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Abstract—We consider thequery by multiple example problem
where the goal is to identify database samples whose content
is similar to a collection of query samples. To assess the
similarity we use a relative content density which quantifies the
relative concentration of the query distribution to the database
distribution. If the database distribution is a mixture of the
query distribution and a background distribution then it can
be shown that database samples whose relative content density
is greater than a particular threshold ρ are more likely to have
been generated by the query distribution than the background
distribution. We describe an algorithm for predicting samples
with relative content density greater than ρ that is computation-
ally efficient and possesses strong performance guarantees. We
also show empirical results for applications in computer network
monitoring and image segmentation.

I. I NTRODUCTION

Consider the query by multiple exampleproblem
where we are given a collection ofquery samples
Q = (q1, ..., qk), qi ∈ X and a collection ofdatabase
samplesX = (x1, ..., xn), xi ∈ X , and asked to identify
members ofX that are similar in content to members of
Q. The data spaceX will typically be a space of images,
signals, documents, or feature vector representations of one
of these data types. We define a similarity measure to be a
function onX that computes the similarity between a point
x ∈ X and the queryQ. Assuming that the samples inQ
andX are generated according to probability distributionsPq

and Px respectively we consider using the following density
functions as similarity measures;

• the content densitypq that quantifies the absolute con-
centration ofPq and is given by the Radon-Nikodym
derivative

pq := dPq/dµ

where is theµ is the Lebesgue measure, and
• the relative content densityp that quantifies the relative

concentration ofPq to Px and is given by the Radon-
Nikodym derivative

p := dPq/dPx

where we assume thatPq is absolutely continuous with
respect todPx (so thatp is well-defined).

Members ofX that fall into the high density regions ofpq

are also guaranteed to be close to a nontrivial fraction of the
samples inQ, and sopq is analogous to common distance-
based similarity measures. With a suitable choice oft we can

say that the set{x ∈ X : pq(x) > t} contains samples that
are likely to be generated byPq.

In contrast therelative content densityp has a different
interpretation. Suppose that some of the samples inX are
generated byPq and the rest by another processPother. Then
Px is a mixture distribution

Px = βPq + (1 − β)Pother, for some0 < β < 1.

and with the appropriate choice ofρ the set
{x ∈ X : p(x) > ρ} contains samples that aremore likely to
be generated byPq than Pother. In many applications the
relative content densityp will be preferred over thecontent
density pq. However retrieval algorithms for therelative
content densitymay be more complicated since this density
relies on bothPq andPx, instead of justPq.

We now mention a related problem whose formulation turns
out to be identical. In this problem the raw data is assumed to
be structured in a way that leads to a standard notion of “local
regions” within the data. Examples include image data whose
local regions might correspond to small spatial windows, or
time series data whose local regions might correspond to small
temporal windows. For this problem we are given a query
sampleq and a database samplex and asked to identify local
regions ofx that are similar (in content) to the local regions
of q. If we defineX́ = (x́1, x́2, ...), x́i ∈ X be the collection
of local regions ofx, and Q́ = (q́1, q́2, ...) q́i ∈ X to be the
collection of local regions ofq, and assume data generating
distributions Pq́ and Px́, then we can define density-based
similarities that quantify the absolute concentration ofPq́,
and the relative concentration ofPq́ to Px́ just as we did
above. Applying a threshold to these density-based similarities
performs asegmentationof x into local regions that are similar
to the local regions ofq.

The common task in the formulations above is to identify
the members ofX (or X́) whose density value exceeds a
threshold. To accomplish this we solve a slightly more general
problem called thedensity level detection(DLD) problem
where the goal is to identify the subset of the data spaceX
where the density exceeds a threshold. For convenience we
will develop solution methods for the relative content density
p with thresholdρ, but it should be clear that these same
methods can be used for the other formulations as well.

To solve the DLD problem we design a real valued function
f that approximates the set{p > ρ} with the set{f > 0}.



The quality of the approximation is assessed by the criterion

s(f) := Px({f > 0} △ {p > ρ})

where △ denotes the symmetric difference. This criterion
corresponds to the average number of mistakes made byf ,
i.e. it represents the fraction of time thatf predicts that a
sample is in the high density region when it is not, plus the
fraction of time it predicts that a sample is not in the high
density region when it is. The design problem can be stated
as follows.

Retrieval Function Design: Given a ρ > 0, query samples
(q1, ..., qk) ∼ Pq, and input samples(x1, ..., xn) ∼ Px, design
a functionf̂ such thats(f̂) is small.

Remark: A close relationship exists between the DLD prob-
lem above and the binary classification problem. In the binary
classification problem we assume a data generating distribution
Px = p1Px,1 + p0Px,0 and we seek a real valued function
f that minimizes the binary classification errore(f) =
p1Px,1(f < 0) + p0Px,0(f ≥ 0). In ([1], Section 5) it is
shown that ifPx = βPq + (1 − β)Pother then withρ = 1

2β

anyf that minimizess also minimizes the binary classification
errore(f) for the binary classification problem wherep1 = β,
p0 = 1 − β, Px,1 = Pq and Px,0 = Pother. Thus, the
algorithms developed in this paper are directly applicableto
binary classification problems whose input data consists of
labeled samples from one class and unlabeled samples from
the mixture. These problems are often referred to aslearning
from only positive and unlabeled data(LPU) problems.

II. SOLUTION METHODS

Numerous solution methods might be considered for com-
puting f̂ , including methods based on various forms of density
estimation, but first we consider the issue of validating the
performance off̂ independent of how it is computed. Since
Pq andPx (and thereforep) are generally unknown there is no
hope of computing the performances(f̂) directly. Furthermore
there appears to be no reliable way of estimatings(f̂) from
empirical data since we have no ground truth for the samples
in Q andX (i.e. we do not know if their density values exceed
ρ). However, a general method for validating the performance
of f̂ without computing or estimatings(f̂) has been described
in [1]. It is based on the risk functionr defined by

r(f) :=
1

1 + ρ
PQ(f ≤ 0) +

ρ

1 + ρ
PX(f > 0). (1)

Under mild assumptions on the densityp it is possible to
show that the riskr is calibrated to s [1], i.e. r and s obey
a relationship that tightly couples their behavior. The exact
relationship is described in [1], but here it suffices to say
that this relationship implies that all functions that minimizer
also minimizes. Furthermore, all functions thatapproximately
minimize r alsoapproximatelyminimize s. Thus, we can use
r instead ofs as a performance criterion. This is important
because, unlikes, the risk r can be estimated from sample
data. In particular we can use the samples inQ and X to

provide empirical estimates of the probabilities in (1) andthus
estimater using

r̂(f) =
1

1 + ρ

1

k

k
∑
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I(f(qi) ≤ 0) +
ρ

1 + ρ

1

n

n
∑
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I(f(xj > 0)

whereI(·) is the identity function that takes the value1 when
its argument is true and0 otherwise. This estimate can be used
to validate a solution̂f , compare the performance of different
solution methods, and select the so-called tuning parameters
that accompany solution methods.

The calibrated riskr also allows us to consider non-density
based solution methods, in particular methods that choose
f̂ to minimize r more directly (e.g. by minimizinĝr or a
surrogate version). The method proposed in [1], and the one
adopted here, is based onsupport vector machines(SVMs).
Simply put, the SVM method chooseŝf from a reproducing
kernel Hilbert space(RKHS) of functionsF to minimize the
surrogate criterionR given by

R(f) := λ‖f‖2
F +

(

1

1 + ρ

)

1

k

k
∑

i=1

[

1 − f(qi)
]

+

+

(

ρ

1 + ρ

)
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n
∑

i=1

[

1 + f(xi)
]

+

(2)

where [·]+ is a clipping operation that gives[a]+ = a when
a > 0 and 0 otherwise. The criterionR is obtained by
replacing the nonconvexr with a convex andcalibrated (see
[2]) rc given by

rc(f) :=
1

1 + ρ
PQ

(

[

1 − f(q)
]

+

)

+

ρ

1 + ρ
PX

(

[

1 + f(xi)
]

+

)

,

then forming the empirical estimatêrc of rc and adding a
regularization termλ‖f‖2

F
to control the finite sample effects.

Solutions to (2) take the form [3]

f(·) =

k
∑

i=1

αq,ik(·, qi) +

n
∑

i=1

αx,ik(·, xi)

wherek(·, ·) is the kernel function for the RKHSF . When
the data space isX ⊆ R

d a common choice fork(·, ·) is the
Gaussian RBF kernel

k(x1, x2) = exp(−σ‖x1 − x2‖
2).

With this choice the SVM method method has been shown
to be universally consistent [1]. Furthermore, under mild
assumptions on the distributions (similar to the assumptions
required for the calibration ofr to s) the SVM method has
been shown to possess fast rates of convergence to the Bayes
optimal solution [4].

Practical algorithms for (approximately) minimizingR are
common, but few are guaranteed to run in polynomial time.
We employ a polynomial time algorithm from [5], [6]. This
algorithm is a so-called decomposition algorithm that searches
for the optimalα using an iterative procedure that optimizes



two coefficients at a time until a stopping condition that
guaranteesR(f̂) − minf R(f) < ǫ is satisfied. Assuming a
data spaceX ⊆ R

d and applying the run time analysis in
[5] to the SVM formulation here gives the following run time
bound

O

(

(n + k)2
[

d +
(n + k)

λǫk2
+ log

λk2

(n + k)

])

.

A complete algorithm that builds on the above algorithm
and automatically chooses the regularization parameterλ and
kernel widthσ is described and analyzed in [7]. A version of
this algorithm is used in the experiments in this paper.

To validate our results we compute empirical estimates ofr
on a “hold out” data set. We also assess performance in terms
of the following components ofr.

• PQ(f ≤ 0) is called theQ-missed detection rateand
represents the fraction ofX samples generated byPQ

but not retrieved, and
• PX(f > 0) is called theretrieval rateand represents the

rate at which samples fromX are predicted to be similar
to Q.

To assess performance we plot the Q-detection rate (i.e. 1 -
the Q-missed detection rate) versus the retrieval rate asρ is
varied over a range of values (similar to an ROC curve).

III. E XPERIMENTS

We now describe experimental results for two applications;
computer network monitoring, and image segmentation. The
network monitoring application is an instance of thequery
by multiple exampleproblem and the image segmentation
application corresponds to a problem where weidentify lo-
cal regions with similar content. In both cases we compare
solutions obtained with the SVM method in Section II against
solutions obtained using a more conventional approach.

A. Network Monitoring

In the network monitoring problem our goal is to identify
a particular type of activity inencryptednetwork flows1. In
the experiments below we attempt to identify flows associated
with the “CHAT” protocol, but our approach applies to other
types of activity as well. When a flow isunencryptedit is
relatively easy to determine the flow type by examining the
flow packet contents. However this is useless for encrypted
flows and so determining their flow type is a difficult problem.
We solve this problem using aquery by multiple example
approach where:

• The database samplesX = (x1, ..., xn) correspond to
encrypted network flows. In our experiments we have
100,027 encrypted flows from a busy computer network.

• The query samplesQ = (q1, ..., qk) correspond to flows
of a known activity type. In our experiments we have
3450 CHAT flows from unencrypted traffic on the same
busy network.

1Network flows are sequences of packets with well-defined start and end
points, and are the fundamental data unit processed by most network analysis
tools.

In our experiments the flow samples are represented by finite
dimensional feature vectors derived from thepacket sizeand
wait timeflow sequences. Example sequences are shown in the
table below where the packet sizes are in bytes, weight times
are in milliseconds, and the packet direction (i.e. host-to-client
or client-to-host) is encoded by the sign of the number.

Packet Sizes 132, -122, 43, 28, -27, 23
Wait Times -0.081, 0.003, -0.183, 0.002

We compare the SVM method with a conventionalsignature
matching method which designates a samplex ∈ X to
be “similar” to Q if its Euclidean distance to one of the
signature samplesfrom Q is below a thresholdt. To provide
an appropriate tuning for different values ofρ, the threshold
t is chosen to minimize the risk̂r. The signature samples are
chosen as a random subset ofQ, and the remaining samples in
Q are used to estimate the risk̂r, choose the thresholdt, and
estimate theQ-missed detection and retrieval rates. Since the
regions identified by placing hyperspheres of radiust around
the signature samples provides a crude approximation to the
high density regions ofpQ, this signature matching method is
analogous to retrieval based oncontent density(as opposed to
relative content density).

The performance results are shown in Figures 1 and 2.
The lower risk values in Figure 1 tell us that the SVM
method is doing a much better job at minimizing the mistake
rate (sincer is calibrated tos) for all values of ρ. The
superiority of the SVM method is even more pronounced in
Figure 2. For example this figure tells us that if we want to
detect approximately 90% of the samples generated byPq the
retrieval rate for the SVM method is approximately 4 orders
of magnitude smaller than the signature match method.
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Fig. 1. Risk estimates for methods designed to extract CHAT flows from
encrypted network traffic.

B. SAR Image Segmentation

Synthetic aperture radar (SAR) imaging has become an
important surveillance tool for monitoring man–made targets
such as buildings, manufacturing facilities, and militaryvehi-
cles. The segmentation task is to identify regions of a SAR
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Fig. 2. Estimated performance curves for methods designed to extract CHAT
flows from encrypted network traffic.

image that are likely to contain targets of interest. This is
a challenging task because optimal segmentation is thought
to require prior knowledge of both targets and clutter, but
this knowledge is often not available because the deployed
environments are not known ahead of time. We describe an
approach that only requires target knowledge ahead of time,
and (implicitly) gathers clutter informationin the field at
the time of deployment from the deployed SAR image that
contains a mixture of target and clutter. In particular we
identify local regions of the deployed SAR image that are
similar in content to the local regions of a target rich query
set constructed ahead of time. Using the results in [1] we can
show that our approach provides optimal segmentation without
the need for ground truth clutter information (see the remark
at the end of Section I). Furthermore the solution is tailored
to the statistics of each individual deployment.

The segmentation task is performed by a pixel classifierf
that labels each pixel in the deployment image as either target
or clutter, and then combines the target pixels to form the
regions of interest. Our experiment uses one foot resolution,
single–look, HH–polarized, X–band SAR magnitude data col-
lected at a 15 degree depression angle as a part of DARPA’s
MSTAR program [8]. The target is a T-72 tank. To form the
query set we selected 274 target images corresponding to a T-
72 tank imaged at 274 different aspect angles over the range
0 to 360 degrees. Each target image was hand labeled as
shown in Figure 3. Local “target regions” were represented

Fig. 3. A T-72 image (left) and a corresponding hand labeling of the target
pixels (right).

by the (overlapping) 10–by–10 pixel windows surrounding
the target pixels in each of these images. We extracted a

random subset of 10,383 of these regions to form the query
set Q́ = (q́1, ..., q́10383), qi ∈ R

100. We show results against
the deployment SAR image in Figure 7. This image contains
18 military vehicles (3 of them are T-72 tanks, 6 of them are
other tanks) and 7 corner reflectors. A random subset of 41,670
local 10–by–10 pixel windows were extracted from this image
and used in the SVM design off .

The SVM solution is compared to a widely used SAR pixel
classifier, thecell averaging constant false alarm(CA-CFAR)
detector [9]. This detector computes the function

f(i, j) =

(

x(i, j) − µ̂(i, j)

σ̂(i, j)

)

− τ

at each pixel location(i, j) in the image wherex(i, j) is
the pixel value at location(i, j), µ̂(i, j) and σ̂(i, j) are the
sample mean and standard deviation of pixel values from a
stencil surrounding location(i, j) as illustrated in Figure 4,
and τ is a threshold chosen to control thefalse alarm rate
(i.e. the rate at which clutter pixels are labeled as target
pixels)2. Pixel locations wheref > 0 are labeled as target.
Since this approach identifies pixel values in the complement
of the high density regions of the clutter density it is analogous
to retrieval based oncontent density(as opposed torelative
content density). To provide a basis for comparison we chose
the CFAR thresholdτ to minimize the empirical riskR. In
this way the threshold varies automatically withρ.

stencil

center

Fig. 4. Illustration of the stencil region used to estimate clutter statistics for
the CA-CFAR detector.

The performance results are shown in Figures 5 and 6. Both
figures support the conclusion that the SVM method is superior
at minimizing the DLD mistake rate for all values ofρ (and
therefore superior at identifying similar regions). Theseresults
are confirmed visually in Figure 7 where it is easy to see that
the SVM method does a better job at identifying “on target”
pixels and suppressing false alarms in the clutter regions.
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