
Ordered Hypothesis Machines

Reid Porter, G. Beate Zimmer, Don Hush

Abstract

Just as linear models generalize the sample mean and weighted av-
erage, weighted order statistic models generalize the sample median and
weighted median. This analogy can be continued informally to general-
ized additive models in the case of the mean, and Stack Filters in the
case of the median. Both of these model classes have been extensively
studied for signal and image processing, but it is surprising to find that
for pattern classification, their treatment has been significantly one sided.
Generalized additive models are now a major tool in pattern classification
and many different learning algorithms have been developed to fit model
parameters to finite data. However Stack Filters remain largely confined
to signal and image processing and learning algorithms for classification
are yet to be seen. This paper is a step towards Stack Filter Classifiers
and it shows that the approach is interesting from both a theoretical and
a practical perspective.

1 Introduction

Stack Filters are a popular nonlinear filter for noise suppression in image and
signal processing (Wendt et al., 1986). Several model classes related to Stack
Filters have been suggested for classification including morphological networks
(Ritter & Sussner, 1996), min-max networks (Yang & Maragos, 1995) and or-
der statistics (Tumer & Ghosh, 1999). One of the reasons why Stack Filters
have not been directly applied to classification problems is because Stack Filter
classifiers appear to reduce to a known problem: learning a Boolean function.
In this paper we show that on closer inspection, optimizing Stack Filters for
classification leads to a different Boolean function learning problem than has
been traditionally considered. The most similar prior work in this respect is the
Positive Boolean Function classifier suggested in (Han, 2002).

Since Stack Filter classifiers reduce to Boolean function classifiers, they also
share many properties with decision tree classifiers, including fast and sim-
ple implementation, and increased interpretability. Some of the difficulties en-
countered with these types of classifiers include high approximation error and
combinatorial learning problems. Several important learning algorithms have
been developed to address these difficulties in different ways. Traditionally tree
models are built with a top-down greedy method, and then pruned to control
over-fitting (Quinlan, 1993). Alternatively models can be constructed incremen-

1

tally where over-fitting is controlled by step-wise approximation of a regularized
loss function (Y. Freund, 1997). More recently theoretical results and increased
computing resources have enabled the development of optimal learning algo-
rithms over the class of dyadic decision trees (Blanchard et al., 2007). These
methods have been applied successful to practical problems and provide an exact
minimization of a complexity penalized loss function.

In this paper we propose an approach most similar to the last method, in
that we suggest a global optimization problem for Boolean function classifiers
that can be exactly minimized. We also show that by approaching the problem
as a Stack Filter, we arrive at a new and unique method to control over-fitting.

2 Main Results

To present our main results we define some basic notation. We consider two-class
classification, where we are given a training set {(x(1), y(1)), . . . , (x(N), y(N))}
of N points, x ∈ RD, with labels, y ∈ {−1, 1}, drawn from a distribution
PX,Y . The task is to find a model (or function) F : RD → R that has small
error e(F) = EX,Y (1{sgn(F (x))6=y}). Classification performance is measured by
the excess error of the classifier e(F) compared to the Bayes optimal classifier
e∗ = inf∀F e(F) and can be viewed as a combination of approximation and
estimation errors (these quantities are related to bias and variance):

e(F)− e∗ =
(

e(F)− inf
F ′∈F

e(F ′)
)

+
(

inf
F ′∈F

e(F ′)− e∗
)

(1)

The first term is estimation error and is due to the fact that we only have
a finite number of examples to select the best model from the model class F .
The second term is approximation error and is due to the fact that the Bayes
classifier is not represented in the model class. These two errors have conflicting
needs: a common way to reduce approximation error is to increase the capacity
of the model class but this typically increases the estimation error. The learning
algorithm must balance these needs and the most common approach is to choose
a function F that minimizes a training set error:

F̂ ∈ arg min
F∈F

ê(F,L) (2)

F̂ ∈ arg min
F∈F

1
N

N∑

i=1

L(F (x(i)), y(i)) (3)

where L : (R, y) → R is a loss function. The choice of loss function affects
both the estimation and approximation errors of F̂ and must be carefully chosen.
A popular approach is to define a very rich model class and then parameterize
the loss function in a way that allows the tradeoff to be easily tuned to the
application: Lγ(F (x), y). At one extreme of γ, the loss function would define
a classifier with zero approximation error and at the other extreme, a classifier

2

with zero estimation error. We would also like both errors to decrease as N
increases. It would also be desirable if the value of γ was well behaved, or in
some way easy to tune e.g. it is a smooth (convex) function of the excess error,
and/or it is constrained to a small, finite number of values.

Support vector machines provide one solution to this problem for Reproduc-
ing Kernel Hilbert space model classes, and in this case the loss function includes
a regularization parameter. In this paper we suggest a loss function and cali-
bration parameter for Stack Filter classifiers with several desirable properties.
In particular we show that:

1. For misclassification loss:

L(F (x), y) = 1{F (x)6=y} (4)

a Stack Filter minimizer can be found via a linear program of O(N) variables.
2. For large-margin misclassification loss:

Lγ(F (x), y) = 1{yF (x)<γ} (5)

a Stack Filter minimizer

F̂γ(x) ∈ arg min
F∈F

ê(F, Lγ) (6)

is equivalent to minimizing misclassification loss with a Stack Filter from a
restricted function class:

F̂γ(x) ∈ arg min
F∈Fγ

ê(F, L) (7)

where Fγ ⊆ . . . ⊆ F1 ⊆ F . This margin parameter is monotonically related
to the size of the Stack Filter function class and is also discrete and bounded.

3. For large margin hinge loss

Lh
γ(F (x), y) = (γ − yF (x))+ (8)

a Stack Filter minimizer also minimizes the sum of large-margin misclassifi-
cation loss functions:

F̂h
γ (x) ∈ arg min

F∈F

γ∑

γ′=−γ

ê(F, Lγ′) (9)

This result implies that large-margin hinge loss is a good choice for optimiz-
ing stack filter classifiers. It has one parameter, which determines the size of the
model class considered during optimization, and it minimizes the dependence
on that parameter, which makes it easier to tune. The size of the model class
F , although finite, can be made arbitrarily large and minimization over F is
exact with a linear program of O(2γD) variables.

Currently the main limitation to minimizing Stack Filters under hinge loss is
the size of the linear program. In Section 6 we suggest a related solution method,
which can scale to practical problem sizes. This solution method sacrifices some

3

of the advantages associated with the hinge loss solution such as interpretability
and efficiency of implementation. However the approach has competitive per-
formance on practical problems and suggests several new avenues of research.

3 Stack Filters

Stack Filters are defined using threshold decomposition and monotonicity con-
straints. Given a real valued input vector x = [x1, x2, . . . , xD] we define a
thresholding function u = x < c that produces a binary vector with compo-
nents ui = 1{xi>c}. We then define a Stack Index Filter, SI : RD → {1, . . . , D}
as:

SI(x) =
D∑

d=1

f(x < x(d)) (10)

where x(d) is the dth smallest component of x and f : {0, 1}D → {0, 1} is a
positive Boolean function (PBF). A Boolean function is positive (or monotone,
non-decreasing) if it satisfies the stacking constraint that ui > vi, ∀i implies
f(u) > f(v). A Boolean function that is defined using ‘and’ and ‘or’, but no
negations, satisfies this constraint. A Stack Filter, S : RD → R, is related to a
Stack Index Filter by the relationship:

F (x) = x(SI(x)) (11)

There is a one-to-one correspondence between the class of positive Boolean
functions, the class of Stack Index Filters and the class of Stack Filters, and we
use the terms interchangeably.

3.1 Stack Filter Classifiers

The first step in applying Stack Filters to classification problems is to extend
the input space using the mirror-map M : RD → R2D given by M(x) = [x,−x]
(Paredes & Arce, 2001). This provides an absolute reference point at 0 and
means we can use the sign of the Stack Filter as a class indicator much like
other real-valued function classes used for classification.

Figure 1 provides an example of a Stack Filter classifier predicting y = 1 for
a mirrored input sample x = [3, 1, 2,−3,−1, 2]. The monotonicity constraints
mean that the the output column is always a solid stack of ones, and the height
corresponds to the Stack Filter output. In addition, monotonicity also means
that:

1{F (x)>t} = 1{f(x<t)} (12)

In Figure 1 we see a Stack Filter thresholded at zero is equivalent to a
positive Boolean function applied to an abstract middle row between Dth and
(D + 1)th thresholds. A topic of interest in this paper are learning algorithms

4

that require the Stack Filter output to be further from the decision boundary.
This distance can be measured in terms of the number of threshold levels and
is called rank-order margin. For example, in Figure 1 the sample has been
predicted with rank-order margin γ = 2.

x =[3, 1, 2, -3, -1, -2]

1

1

1

1

1

1

0

0

1

1

1

1

0

1

1

1

1

1

0

0

0

0

0

1

0

0

0

1

1

1

0

0

0

0

1

1

 x(6)

 x(5)

 x(4)

 x(3)

 x(2)

 x(1)

F(x)

f()

f()

f()

f()

f()

f()

0

1

1

1

1

1

2

y = 1

y = -1

F(x) = 0

Figure 1: Example of rank-order margin.

4 Loss Functions

In this section we discuss minimizing a number of loss functions for Stack Filters.
These loss functions are illustrated in Figure 2.

Loss

yF(x)

Large margin 0-1
0-1 Loss

hinge loss

 x(2D) x(D+) x(D- - +1) x(1) x(D)

1

2

Figure 2: Loss functions that are investigated.

4.1 0-1 loss

From Equation 12 it follows that:

5

L(F (x), y) = 1{yF (x)<0}
= 1{−yf(x<0)}

(13)

where we redefine the Boolean function output labels to simplify notation:
f : {0, 1}D → {1,−1}. Finding the Stack Filter which minimizes 0-1 loss, is
equivalent to finding the positive boolean function that minimizes 0-1 loss. We
first consider the related problem of finding a Boolean function that minimizes
0-1 loss. We define a partially specified Boolean function where we assign class
labels to the rows of a look-up table that appear in the training set thresholded
at zero: u = x < 0. The same row can appear multiple times in the training
set and so we identify the unique set by Q = {q(1), q(2), . . . , q(M)}. A straight-
forward solution is to implement a plug-in type classifier and estimate the class
conditional probability for each q(i) independently:

P̂q(i) =
∑N

n=1 1{u(n)=q(i),y(n)=1}∑N
i=1 1{u(n)=q(i)}

.

We assign class labels zi for each qi with the rule:

zi =
{

1 if P̂q(i) > 0.5
−1 otherwise

(14)

If we restrict the Boolean function to be positive, then we must introduce
monotonicity constraints. This means the plug-in rule of Equation 14 is replaced
by an integer linear program:

minimize c.z
subj zi > zj when qi > qj

and zi ∈ {0, 1} ∀i, j
(15)

where the cost for variable zi is ci = 0.5− P̂q(i). Note, to simplify notation
we switched to class labels {0, 1}. The constraint matrix is total uni-modular
which means this integer program can be solved exactly by a linear program
relaxation. This linear program was first suggested for Stack Filter optimization
under mean absolute error (Wendt et al., 1986).

4.2 large margin 0-1 loss

We now consider large-margin loss functions and define margin, γ, as the number
of thresholds above (and below) zero in Figure 1. This leads to the large margin
0-1 loss:

Lγ(F (x), y) = 1{yF (x)<x(D+γ)}
= 1{−yf(x<x(D+yγ))}

(16)

where to simplify notation: f : {0, 1}D → {1,−1} and we have omitted a
class dependent offset. For class 1 samples, x is thresholded by x(D+γ), which is
larger than x(D), which means there are less ones. In a similar way, for class -1

6

samples, x is thresholded by x(D−γ+1), which is smaller than x(D), which means
there are more ones. The problem has the same form as the 0-1 loss problem,
however the binary input samples are different.

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

1000 0100 0010 0001

0000

Input

space

= 1

= 1

= 2

= 2

Figure 3: Lattice diagram of the mirrored input space.

In Figure 3 the monotonicity constraints of positive Boolean functions are
illustrated as a lattice where links between two Boolean values u and v implies
an ordering u > v (ui > vi, ∀i). The mirrored representation means that the
original input space is a subset of entries in the middle row of the lattice where
[u, ū]. As rank order margin is increased, samples move higher (for class 1)
and lower (for class -1) in the lattice, which produces increasing numbers of
constraints. In Figure 3 a sample u = [1100] moves to u′ = [1000] at margin 1,
which places an additional constraint on v = [1001].

As γ increases, the number of positive boolean functions that can satisfy the
additional constraints decreases. The large margin 0-1 loss functions for Stack
Filters therefore define reduced sets of PBF function classes.

4.3 hinge loss

Hinge loss is typically defined as (1 − F (x))+, but for Stack Filters, the loss
function is discrete and bounded. Furthermore, as shown in Figure 2, the max-
imum loss incurred is 2γ at threshold level (D−γ +1). This is because for class
1, threshold levels 1 . . . (D−γ) do not introduce any additional constraints, i.e.,
all samples at threshold (D − γ) are below the class -1 samples at (D − γ + 1)
and therefore can be trivially satisfied. The same reasoning applies to class -1
samples above (D+γ). Given this reduced set of thresholds, we can write Stack
Filter hinge loss as:

Lh
γ(F (x), y) =

γ∑

γ′=−γ

1{−yf(x<x(D+yγ′))} (17)

By reordering summations we see minimizing hinge loss is equivalent to
minimizing the sum of large margin 0-1 loss functions as described in Equation 9.

7

The solution has the same form as Equation 15, but with more variables (2γ
times more) and more constraints. Note, that this decomposition of hinge loss
to a sum of misclassification loss functions follows directly from the original
results for Stack Filters under mean absolute error (Wendt et al., 1986). For
classification, this decomposition suggests that the optimal Stack Filter classifier
will have some degree of invariance to the rank order margin parameter. This
is useful in practice since we need to choose this parameter for the application.
Put another way, optimizing Stack Filters with hinge loss smoothes the error
estimate as a function of margin, which should help methods like cross-validation
converge.

5 Input Expansion

Input expansion is an essential component of the proposed approach since direct
application of Stack Filters typically leads to significant approximation error,
e.g., in two-dimensions, the Stack Filter function class has only two functions
(maximum and minimum). The solution is to map the input space into a higher-
dimensional feature space where the Stack Filter can be more usefully applied.
This is typically an application specific problem, but here we consider some
general purpose expansions that work well with Stack Filter learning algorithms.
First, we map each input independently using a set of constant thresholds:

xxd = [xd − td(1), xd − td(2), . . . , xd − td(Td)] (18)

The threshold constants can be chosen in a number of absolute, and data-
dependent ways but we assume that thresholds form a monotonically increasing
set. One way to choose thresholds is to sort the dth component of all N samples,
and choose thresholds as mid-points between consecutive samples:

td(j) = (x(j)
d − x

(j+1)
d)/2

where x
(j)
d is the jth smallest value in the dth component. There are T =

N − 1 thresholds for each component. A variant of this approach only includes
thresholds between samples with different class labels, in which case the number
of thresholds per component is smaller and variable. In Figure 4 we provide an
example of this input expansion in two-dimensions.

In Figure 4 there are 4 points: {P1 = (−6, 4), P2 = (−2,−8), P3 = (6, 10), P4 =
(12,−12)} and there are 3 data dependent thresholds defined per component
t1 = {−4, 2, 9} and t2 = {−10,−2, 7}. Point P1 = [−6, 4] would be expanded
to [{−2,−8,−15}, {14, 6,−3}]. We then threshold the expanded input at zero
to produce a binary string [{000}, {110}]. Since thresholds are applied in in-
creasing order, the thresholded vector can be represented compactly by integer
ranks. We call this representation the rank expansion and for the example we
would have r = [0, 2] where

ri =
∑

1{(xxi)>0}.

8

-4

P2

P3

P4

x2

1.
2.

3.

4.

5.

6.P1

2 9

-10

-2

7

x1

Figure 4: Example of Rank Expansion.

This representation allows for efficient implementation of Stack Filter classi-
fiers. By manipulating the transformed training set {(r(1), y(1)), . . . , (r(N), y(N))}
we effectively manipulate a (D ∗ T)-dimension stack filter in D-dimensions.

The final step in the input expansion, is to apply the mirror map. We use
the same threshold constants for both original and mirrored input components,
which means the mirror map can be expressed as M(r) = [r1, . . . , rD, (T1 −
r1), . . . , (TD − rD)]. This allows us to assign any class label to any partition
with a PBF. That is, for any two partitions a and b, it is not true that ai 6 bi∀i,
and hence there is always a PBF that can assign arbitrary class labels to a and b.
Note that partitions, r, were described in Section 4.1 as rows of a look-up-table,
u, but that the two terms are equivalent.

5.1 Loss functions in feature space

The rank expansion has a simple geometric interpretation. Misclassification loss
minimization is a tiling problem where we maximize training sample coverage
with γ-sized partitions. At zero margin training samples have equal numbers
of ones and zeros and define non-overlapping partitions i.e., q(i)
 q(j)
 q(i).
This means that there are no monotonicity constraints and a pbf can be found
using Equation 14. As we increase margin, partitions grow in size, one threshold
at a time. Eventually partitions overlap and this means that monotonicity
constraints must be satisfied using Equation 15.

The order in which components of r(n) are reduced (or increased) is an
important choice and a place where prior information, or domain knowledge,

9

can be incorporated. For real valued inputs Stack Filters suggest an order
which depends on the distance between the sample and the threshold constants.
In Figure 4 we show an example for P1 which we will assume has a class label 1.
The distances to the various thresholds define the order in which components of
the rank expansion are reduced. These distances are numbered in order of size
in Figure 4. As margin is increased from 1 through to 6, these distances tell us
to subtract 1 from rd in the following order d = {0, 1, 3, 0, 3, 0}.

For other types of inputs, e.g. categorical or binary, the distances to thresh-
olds are less meaningful, and often equal. In this case, the Stack Filter approach
does not suggest which thresholds should be relaxed first. In this paper we use a
simple heuristic to resolve tied distances: we select the threshold which produces
the smallest number of conflicts.

6 Learning Algorithms

The hinge loss classifier can be found via a Linear Program of O(2γN) variables.
One way to view the optimization is shown on the left in Figure 5. The mono-
tonicity constraints of positive (crosses) and negative (circle) margin samples
define local contours of a margin function and the Linear Program selects a con-
tinuous path from these contours that maximizes the sum of sample margins.
The solid gray line in Figure 5 is a hypothetical solution that misclassifies one
negative sample. The main problem with the hinge loss approach is computa-
tion. Using the data dependent threshold expansion described in Equation 18,
γ = (N − 1) ∗D which means we must solve a Linear Program with O(2DN2)
variables. There are two main problems with the hinge loss solution:

1. Computational cost: for most practical problems the hinge loss optimiza-
tion is too big to be solved in reasonable time.

2. Sparsity of costs: as we increase the dimension of the Stack Filter through
input expansion, the training data costs contribute to an ever smaller
fraction of the look-up table (?).

6.1 Average Classifier

One way to address the computational cost is to consider a approximations
where we solve an LP with a subset of the variables. This type of approach has
been suggested for Stack Filters for MAE (?). In this case, the approach is to
identify groups without stacking violations. In our case, the margin parameter
suggests a natural grouping, where each margin is optimized independently:

F̂γ(x) = arg min
F∈F

L(f(x < x(D+yγ)), y) (19)

To simplify notation in Equation 19 we have assumed the original 2D mirrored
input space, instead of the expanded input and have also omitted a class depen-
dent offset. For class 1 samples, x is thresholded by x(D+γ), which is larger than

10

x(D), which means there are less ones. In a similar way, for class -1 samples, x
is thresholded by x(D−γ+1), which is smaller than x(D), which means there are
more ones. The final classifier is the sum of margin optimized classifiers:

F̂ (x) =
D+γ′∑

γ=D−γ′+1

(F̂γ(x) > 0) (20)

We call this classifier the average classifier since it averages the output of clas-
sifiers found at each value of margin. This also has a smoothing effect useful
for cross validation, but it is not as direct as in hinge loss. Equation 9 is very
close to a stack filter. In fact, it would be a stack filter, if the margin classifiers
obeyed a weak ordering constraint:

F̂i > F̂j > . . . > F̂k (21)

If these constraints are met, then the average classifier is equivalent to the
hinge loss classifier: given a set of independently optimized pbfs that satisfy the
constraints, then these pbfs define a stack filter. Since there are less constraints
in the optimization problems at margin values less than γ, this stack filter must
do at least as well as the hinge loss stack filter, and therefore it must be the
hinge loss filter. In practice the constraints in Equation 21 are usually not met.
How well the average classifier approximates the hinge loss classifier is related
to the estimation error of the optimized pbfs and how well behaved estimation
error is with respect to the margin parameter.

Since the average classifier is typically not a stack filter, it does not define a
non-overlapping tiling of the input space. This means that the classifier sacrifices
application speed, implementation ease and interpretability compared to the
Stack Filter solution. Despite the shortcomings, the average classifier also has
some significant advantages. In particular, we still need to optimize the margin
parameter itself, and this can be very expensive for the hinge-loss classifier
where we must evaluate each margin independently. For the average classifier,
optimizing all margin values upto γ has the same cost as optimizing the average
classifier at margin γ. This, combined with the fact that the average classifier
solves a much smaller linear program than the hinge loss, means that average
classifier can be applied to a much larger problems. The average classifier is
an approximation to hinge loss, and in some case this approximation will work
better than in other cases. One solution is to combine the advantages of both
approaches and replace Equation 19 with:

F̂γ(x) = arg min
F∈F

γ+n∑

γ′=γ−n

L(f(x < x(D+yγ′)), y) (22)

For n = γ this loss function leads to the hinge loss classifier, i.e., each margin
solution is the hinge loss solution. And for n = 0 the loss function is equivalent
to the average classifier. For intermediate values we replace misclassification loss

11

with hinge loss, which smooths the the estimation error locally around margin
γ.

We investigated some of the tradeoff’s between the average classifier and
the hinge loss classifier using a synthetic dataset. Two classes are drawn from
4-dimensional symmetric Gaussians: µ−1 = −~I, σ−1 = ~I and µ1 = ~I, σ1 = ~I.
The training sample size is fixed at 50 and performance evaluated with 5000
test samples. To keep the problem size reasonable, the number of thresholds is
fixed at 8 for each dimension. Results were averaged over 20 trials and shown
on the left in Figure 6. As expected, the performance of the average classifier
approaches the performance of the hinge loss classifier as n increases.

6.2 Rank-Distance Classifier

The average classifier is significantly cheaper than the hinge-loss classifier to
calculate, however it has poorer performance and is still expensive for practical
problems: there are O(D ∗ TD) margin values. In this section we investigate an
alternative approach that avoids the Linear Program and also begins to address
the cost sparsity problem.

Figure 5: A one-dimensional representation of samples (zeros and crosses),
monotonicity constraints. Left) Hinge loss minimization and Right) direct esti-
mation of input partitions (squares) with rank-order distance.

The main objective in optimizing hinge loss is to assign class labels to input
partitions that are poorly represented in the training data. As we have seen,
Stack Filter minimizers of hinge loss have attractive properties for this problem.
We now revisit the original problem and suggest direct optimization of class
labels for the input partitions. On the right of Figure 5 we show a second
simplified version of the optimization problem where we assign class labels to
all input partitions independently. This greatly simplifies the optimization. We
define the rank-order distance classifier as a function of r (the mirrored, rank
expansion of an input x) as:

f̂(r) = sgn(
∑

n∈C1

γ∑
m=0

1{r>rm(n)} −
∑

n∈C0

γ∑
m=0

1{r6rm(n)}) (23)

12

where rm(n) is a margin modified version of the nth training sample. In
geometric terms, this classifier is defined by counting the number of positive
and negative partitions that overlap a given point r. In practice this classifier is
easily implemented by constructing a rank-order distance matrix, and we add
(and subtract) the distances from a given point r to each training sample. We
call the distance function rank-order distance and it is defined as the value of
margin where the point is covered by a training sample. In contrast to the
Linear program, this approach is memory-based and appears similar to Prazen
Window or nearest neighbor methods.

The rank-order distance approach assumes we really only care about the
statistics of the thresholded hinge-loss Stack Filter. By estimating these statis-
tics independently for each partition we obtain significant computational savings
but also reduce approximation error. That is, the partitions used during hinge
loss are larger than those estimated with the rank-order distance approach. The
price one pays is the density of solution and the interpretability. The hinge-loss
solution typically produces a small number of terms and each term directly dic-
tates class labels for large partitions of the input space. This model is both fast
to implement and easy to interpret in a decision tree like fashion. With the
rank-order distance classifier we no longer have this simple partitioning of the
input space. Instead we derive class labels for a given point by accumulating
many terms.

The rank-distance classifier is in fact a Stack Filter (the mirrored input space
means we can assign any labels to any input partition with a pbf), however
it is a different Stack Filter to the hinge-loss minimizer. We used a second
synthetic experiment to compare the performance of the rank-distance classifier.
This time, samples are drawn from 4-dimensional symmetric Gaussians with
parameters µ−1 = ~0, σ−1 = ~I and µ1 = 1.5~I, σ1 = 1.5~I. As expected, the rank-
distance classifier obtained improved performance compared to the hinge-loss
classifier due to reduced approximation error. The rank-order distance classifier
obtained the best performance at maximum margin, which we attribute to the
limited capacity of the model class defined by the small number of thresholds.

To investigate this further we apply the rank-order distance classifier to a
multi-modal 2-dimensional xor problem where samples are drawn from Gaussian
distributions with equal variance σ = 2, and class means centered on µ = ±2.
We compare 3 classifiers in Figure 7. RankDistance8 and rankDistance500 are
the rank-order distance classifier with 8 and 500 thresholds/dimension respec-
tively. We also compare the performance of an SVM rbf classifier as the regu-
larization parameter is varied: C = [1e − 3, 1e − 2, 1e − 1, 1, 5, 10, 50, 100, 500].
The SVM rbf parameter is set at σ = 0.1, the best value found with C = 1.
With the increased model capacity, we see that the rank-order margin parame-
ter behaves as we would expect, and that its performance appears competitive
with the SVM.

13

1 2 3 4 5 6 7 8 9
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

zeroOne

hinge

rankDistance

0 2 4 6 8 10 12 14

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Te

st
 e

rr
o

r

zeroOne

avgHinge0

avgHinge1

avgHinge2

avgHinge3

hinge

Rank−Order Margin

Te
st

 e
rr

o
r

Rank−Order Margin

Figure 6: Test errors versus rank-order margin for different learning algorithms.
Left) Performance of the average classifier compared to minimizing misclassifi-
cation loss at each value of margin (zeroOne) and hinge-loss and Right) Per-
formance of the rank-distance classifier compared to zeroOne and hinge-loss
classifiers.

7 Benchmark Experiments

The rank-order distance classifier is applied to the UCI benchmark datasets
described in (Blanchard et al., 2007). Each problem is provided as 100 pre-
partitioned training and test set pairs and the reported percentage is the average
test set error over the 100 trials. During these experiments a simple cross-
validation scheme is used to choose the value of rank-order margin for each trial
independently. 75% of the training set is used to train the classifier and the
remaining 25% is used as a validation set. We choose the value of margin with
the minimal average validation error over 10 folds. Table 1 summarizes results
reported in (Blanchard et al., 2007) and the results obtained with the rank-
order distance method (SFC: Stack Filter Classifier). In all problems we use the
training set to define data dependent thresholds as described in Section 5.

In all problems, the SFC approach outperformed C4.5 and in two of the prob-
lems it outperformed ODT. The SFC performance is competitive and suggests
further investigation is warranted. We observed that the SFC had difficulty
with purely categorical, or binary inputs such as the Flare-Solar and Titanic
datasets. As discussed in Section 5 the best way to expand partitions for bi-
nary, or categorical, inputs is not well defined with our approach. Future work
will need to address this problem and we suggest incorporating techniques from
the decision tree literature may be useful. For the Titanic problem, we also
observed that an error rate of 22.3 could be obtained by simply memorizing
the data (zeroOne loss classifier at 0 margin). This error rate is in fact lower

14

1 2 3 4 5 6 7 8 9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rank−Order Margin

E
rr

or

rankDistance8
rankDistance500
svm

Figure 7: Test error of rank-distance classifiers with different numbers of thresh-
olds compared to an SVM.

than the best reported score for this problem and indicates how important the
choice of margin (or regularization) parameter is for learning algorithms. In
fact, we observed that better performance could often be achieved for several of
the problems, by simply choosing a fixed margin for the SFC.

8 Discussion

Stack Filter classifiers and decision tree classifiers produce similar decision bound-
aries. The C4.5 split points are the same data dependent thresholds described
in Section 5. The two approaches place different constraints on how partitions,
induced by thresholds, can be assigned, but both approaches produce a unique
rule for each partition. However the rank-order distance method does not pro-
duce a rule based representation for the Stack Filter classifier (here we ignore
the trivial rule-based solution which would represent and assign every possible
partition in the input space). In this regard, the rank-order distance method
is perhaps better compared to a non-rule based classifier such as an SVM. The
best results obtained on the benchmark datasets using this larger class of meth-
ods can be found in (Blanchard et al., 2007). Although the results reported here
have higher error than these methods, there is still much that can be improved
in the Stack Filter learning algorithms. Specifically, both the input expansion,
and the cross-validation method used to select the margin, have a large impact
on performance, and have only been briefly addressed in this paper. This is a
topic of future work. In summary, we have proposed two complementary and

15

Table 1: Classification accuracies on selected benchmarks. *Results reproduced
from (Blanchard et al., 2007)

Data set C4.5∗ ODT ∗ SFC

Banana 15.2± 1.3 14.9 ± 1.2 11.03 ± 0.6
Breast cancer 30.8± 4.9 28.7 ± 4.2 29.4 ± 4.2
Diabetes 27.9± 2.6 26.0 ± 2.3 26.7 ± 1.9
Flare-solar 34.5± 2.1 32.6 ± 1.9 34.4 ± 2.2
Thyroid 8.4± 3.5 8.2 ± 3.4 4.9 ± 2.3
Titanic 23.0± 1.1 22.5 ± 1.2 22.9 ± 1.9

related methods for designing Stack Filter Classifiers: one that produces a de-
cision tree like model and one that produces a prazen window like model. This
relationship appears unique to Stack Filter classifiers and could lead to new
methods for maximizing the benefit of both approaches for a given application.

References

Blanchard, G., Schafer, C., Rozenholc, Y., & Muller, K.-R. (2007). Optimal
dyadic decision trees. Machine Learning, 66, 709–717.

Han, C.-C. (2002). A supervised classification scheme using positive boolean
function. 16th International Conference on Pattern Recognition (ICPR’02),
2, 100–103.

Paredes, J. L., & Arce, G. R. (2001). Optimization of stack filters based on
mirrored threshold decomposition. IEEE Transactions on Signal Processing,
49, 1179–1188.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo:
Morgan Kaufmann.

Ritter, G. X., & Sussner, P. (1996). An introduction to morphological neural
networks. 13th International Conference on Pattern Recognition, 4, 709–717.

Tumer, K., & Ghosh, J. (1999). Linear and order statistics combiners for pattern
classification. Combining Artificial Neural Nets., 127–162.

Wendt, P. D., Coyle, E. J., & Gallagher, N. C. (1986). Stack filters. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 34, 898–910.

Y. Freund, R. E. S. (1997). A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences,
55, 119–139.

Yang, P., & Maragos, P. (1995). Min-max classifiers: Learnability, design and
application. Pattern Recognition, 28, 879–899.

16

