
Rotationally Invariant Sparse Patch Matching on GPU and FPGA

Zachary K. Baker and Reid Porter Los Alamos National Laboratory
Los Alamos, NM 87545

Email: {zbaker,rporter}@lanl.gov

Abstract

1 Introduction

Local neighborhood operations are used extensively in
image processing and computer vision, can be substantially
accelerated with custom hardware platforms. By tailoring
the memory architecture, performance improvement of two
orders of magnitude compared to von-Neumann architec-
tures can often be obtained. One of the reasons why these
applications can be accelerated so successfully is due to the
fact that the neighborhood operation is dense. That is, the
same operation is applied independently to each pixel in the
image. Image pixels lie on a regular grid, and the memory
access can take advantage of this regularity.

In recent years, a number of algorithms in image pro-
cessing have been proposed which are not dense, and in-
stead apply local neighborhood operations to a sparse, ir-
regular set of points. These algorithms are now used as
widely as their dense counterparts and appear in many sim-
ilar applications e.g. finding correspondences, recognition
and segmentation. Sparse local neighborhood operations
have two main motivations: 1) Since the local neighborhood
operation is applied to a subset of the pixels, computation
is significantly reduced 2) The subset of pixels can be se-
lected for the application at hand, and hence improve the
performance of some algorithms.

The goal of this work is to demonstrate that high lev-
els of computational burden can be extracted from other-
wise sparse computation, namely, the all-pairs rotationally-
invariant patch match problem.

Modern processors have more processing power than
they have memory bandwidth. This is a common theme
even when considering next-generation processors such as
the IBM Cell. In these processors, performance improve-
ments will not be achieved if the same code used on an old
machine is used. Even if the code is ported to take advan-
tage of the new architectural enhancements of the new pro-
cessor, the memory bandwidth will still constrain the ability
of the processor to take advantage of all of its capability.

In these cases, the processor’s potential can be exploited
through the expansion of computation. If, for the same data
requirements, multiple computation operations can be per-
formed, the relative performance of the system can be in-
creased. Given a static codebase, the changes that this new
optimization paradigm leads to are conversions from look
up tables to on-the-fly computation, or recomputing an in-
termediary value in lieu of saving and retrieving it for later
use.

2 Problem Addressed

Given two sequential frames of video data, we hope to
track elements between the two frames. Candidate elements
for matching are determined by searching the area around
interest points for their best match in the next frame. This is
done by comparing a k × k pixel block around the interest
point in a pixel-wise comparison. A convolutional filter can
be applied to the pixels to reduce misleading noise. Weight-
ing can be performed to bias the system toward patches that
have smaller displacements between frames. In the spirit of
increasing the computational burden

Given a large number of patches to compare between two
frames, the problem becomes bottlenecked by the cost of
moving data in and out of the processing units. This is par-
ticularly a problem for moving data out, as the number of
results is proportional to the computation complexity of the
problem, or n2. While the input data is well-matched to
the complexity, requiring only nk2 input elements for the
n2k2 computation required, the output does slow the whole
system.

When converting this algorithm to accelerated hardware
platforms, there are several approaches we can take the im-
prove the overall performance. The first of these is reducing
the number of output elements by determining the weighted
best match over all of the possible candidates. This allows
us to only output n outputs. The second and more inter-
esting approach is to introduce rotational invariance to the
problem.

Rotational invariance is computationally intensive. In-
variance is produced by simply rotating all of the patches
over a range of angles to determine if they would better



match at a different angle. This is particularly important
in a tracking application as vehicles and people tend to turn
as they move through the frame. By rotating and comparing
patches over a range of rotational angles, it is possible to
more accurately track them through the scene.

However, the rotations are clearly computationally ex-
pensive. Assuming that the angles are fixed, a designer can
avoid recomputing the sine and cosine values required for
the rotation, but still must do the vector multiplications and
interpolation required to produce a smoothly rotated image.

3 Accelerated Hardware

3.1 Field Programmable Gate Arrays

FPGA’s provide a fabric upon which applications can be
built. FPGAs, in particular, SRAM based FPGAs from Xil-
inx [?] or Altera [?] are based on a look-up tables, flip-flops,
and multiplexers. In these devices, a SRAM bank serves as
a configuration memory that controls all of the functionality
of the device, from the logic implemented to the signaling
standards of the IO pins. The values in the look-up tables
can produce any combinational logic functionality neces-
sary, the flip-flops provide integrated state elements, and the
SRAM-controlled routing direct logic values into the appro-
priate paths to produce the desired architecture. The device
is composed of many thousands of basic logic cells that in-
clude the basic logic elements, and based on the device va-
riety, includes fast ASIC multipliers, ethernet MACs, local
RAMs, and clock managers.

We believe that intelligent architectural design is worth
more than a simple implementation. There are many tools
for automatically converting a high-level language program
into a low-level design. With recent advances in compiler
and synthesis technology, it is now possible to map the com-
putationally intensive modules of a program in Fortran, C
(SRC Carte [?] and Celoxica [?]), or Java (Xilinx Forge [?])
to hardware. Due to the development of these high-level
design tools [?, ?], the scientific computing community can
utilize reconfigurable devices without steep learning curves.

However, while the ease and popularity of using FPGAs
for application design has increased, the automatically gen-
erated architectures tend to be inefficient compared to well-
researched and thought-out architectures for complex ap-
plications. In these situations, the creativity and domain
knowledge relevant to a design provided by a human de-
signer is a valuable asset.

3.2 Graphics Processors

The Graphics Processing Unit (GPU) is a Commodity-
Off-The-Shelf (COTS) product that is meant for accel-
erating the rendering of images to the screen. The in-
tended audience of these products is largely the gaming

market, where high frame rates and elaborate, complex 3-
D graphics require state-of-the-art technology. Because of
the demand from the gaming community, companies such
as NVIDIA [2] and AMD/ATI [1] have provided process-
ing capabilities that have outstripped the development of
general-purpose microprocessors.

Part of the ability of GPU developers to innovate comes
from the restrictions that come with their target applica-
tions. Graphics code tends to be image-centric, with data
access and result production occurring in a very predictable
manner. In particular, codes tend toward easily vectorizable
computation with limited data usage. Other common char-
acteristics include [3]:

Single-instruction, multiple data (SIMD) structure - the
same code is executed for each pixel of an image. Be-
cause all of the processors are performing the same oper-
ations, there are fewer synchronization problems and fewer
resources dedicated to instruction queues and branch pre-
diction. This architectural structure does not easily support
branching, as data movement needs to occur in lockstep
through many parallel processors.

Single result outputs - this is a particular restriction of
GPU architectures before the NVIDIA GeForce 8800 [2],
released in late 2006. This model assumes that all calls to
a subroutine will produce a single return value. This is a
reasonable assumption for many graphics-centric applica-
tions, as well as image processing applications that do not
necessarily result in a displayed image. Convolution, for
instance, and template matching produce a single output.

In this model, computations executed on the GPU behave
much like single-return value functions. This can be incon-
venient, as we will see later, as many computations have
side effects and multiple results. In these situations, the sin-
gle pixel output restriction causes us to repeat computation
or build elaborate workarounds.

The single pixel output restriction also means that scat-
tering data is impossible. Because a function can only pro-
duce one output, and that output is ultimately the render-
ing output for a pixel, it is impossible to randomly place
data into memory. While gathering data from arbitrary loca-
tions is supported, data outputs are restricted in the graphics
paradigm. In that paradigm, pixels are rendered to a image
frame, and scatter is rarely required.

Data locality - this is less of a constant across all GPU ap-
plications and more of determination of performance for a
given application. Considering simple kernels like convo-
lution and template matching, the data locality is high, with
each pixel output only considering the pixels in its imme-
diate vicinity. While the internal architecture of GPUs is
proprietary and closely held by NVIDIA and ATI, the im-
portance of cache locality remains. Neighborhood opera-
tors continue to be a strength of GPU devices even as their
capabilities become more general.

Vectorizable Code - There are two paradigms for this ap-

2



Result out

M
em

or
y:

 P
oi

nt
0 

fo
r 

al
l p

at
ch

es

M
em

or
y:

 P
oi

nt
1 

fo
r 

al
l p

at
ch

es

M
em

or
y:

 P
oi

nt
(n

) 
fo

r 
al

l p
at

ch
es

. . . 

. . . 

Score
Logic

proach within the GPU. Because of the SIMD nature of the
intended applications, there is benefit in performing compu-
tation in a vector format. For instance, in a series of compu-
tations on successive pixels, the computational pipeline can
remain full as there is a large volume of data and indepen-
dent computation.

The second opportunity for vector acceleration is by
packing multiple values into the Red, Green, Blue, and Al-
pha (RGBA) components of a pixel. In some situations, this
allows the computation to be spread across parallel vector
units. However, the performance of the packing seems to
be a driver and implementation dependent. We have ob-
served kernels where using only the Red channel is faster
than packing the data across RGBA.

4 FPGA Base Architecture

The FPGA system is based around an Annapolis Wild-
star II board with a PCI-X interface and dual Virtex II Pro
100’s. This card provides sufficient bandwidth between
main memory and the FPGA, as well as large QDR SRAMs
useful in storing intermediary results and image data.

Software is responsible for filtering out the area around
interest points into patches. This allows much higher ef-
ficiency compared with the FPGA accepting entire frames
and then deciding what to keep. An alternate system was
considered that filtered the entire frame. However, the sys-
tem was only competitive if the number of patches in a
frame is very high. Specifically, because the number of
computational steps for n input patches is n2, the ratio of
k element patches to frame size must be at least n2/kn to
keep a FIFO full.

The architecture computes the sum of absolute differ-
ences on an entire patch with a throughput of one cycle per
pair of patches. Even at the 50MHz clock rate of the board,
the ability to compute a large number of computation in par-
allel that would normally be carried out sequentially is large
benefit.

Pa
tc

h 
da

ta
 f

or
 f

ra
m

e 
Y

. . .

. . .

Score for Patch 5 (frame X) vs. Patch 3 (frame Y)

Patch data for frame X

The amount of parallelism in patch comparisons is lim-
ited only by the size of the FPGA. Table ?? illustrates the
area requirements of the FPGA for a variety of patch sizes.
For a relatively large 10x10 patch, the 100 accumulators are
generated.

for i = 1 to n
for j = 1 to n

parallel: for k = 1 to k
sum += abs(patcharray(i)(k) -

patcharray(j)(k));

The large amount of distributed RAM that can be synthe-
sized in modern FPGAs makes possible some architectural
enhancements that make the system possible. The vast com-
putational capabilities of the FPGA can only be harnessed
if a similar amount of on-chip bandwidth can be matched to
the computational units.

Figure ?? illustrates the datapath within the system.
Each pixel in a patch has its own memory. There are a to-
tal of k memories in the system, each having dual memory
ports. Each of these memories contains the ith pixel ele-
ment in the patch for all n. Because the memories have two
ports, there is only one copy of the pixel in the system,yet
the comparators can be fed two different patches simultane-
ously. For the k=100 case, having 2*100 parallel memory
ports on any traditional microprocessor is clearly out of the
question. However, on an FPGA, it is well within reason.
The Virtex-II Pro has 1.3 Mbits of available on chip dis-
tributed RAM and 7.9 Mbits of Block RAM. In this case,
Block RAM is utilized, which provides true dual memory
ports and does not use any logic slice resources.

Several other options were considered for this architec-
ture, including a systolic array approach that might have
some of the benefits of a closer interconnect and a natural
approach to doing the all-pairs comparison of the patches.

3



. . .

Patch 

Comparators

Bin(n)

Bin1

Bin2

Bin0

The memory issue was the deciding factor in moving toward
the more direct approach. The problem is that in order for
each element of the systolic array (each doing the work for a
single patch) to compare against a patch streaming through
the linear array, there must be a great deal of interconnect
within the array, specifically, k buses of w data bits. This
is not out of the question, but the combination of the large
amount of data bus and the size of the individual units, the
overall interconnect requirements made the systolic array
approach less viable. Additionally, the individual RAM-
per-pixel approach requires far less logical control.

5 Rotational Invariance

Computational burden per byte largely determines the
efficiency of the FPGA system. Much like the IBM Cell,
there is far more computational capability than bandwidth
outside of the chip. Thus, if we can increase the compu-
tation while keeping the bandwidth requirements constant,
the FPGA can become far more useful.

Rotational invariance in the patch matching operation is
achieved by explicitly rotating one of the patches over a
range of angles, providing linear interpolation of the rotated
pixels, and then proceeding as before with the sum of abso-
lute differences.

Figure 5 shows the result of a hardware rotation with
only nearest neighbor interpolation. In hardware, we pro-
vide linear interpolation between the nearest pixels. This
provides a much higher quality end result, as illustrated in
Figure 5.

Depending on the choice of architecture, rotational in-
variance can dramatically increase the total number of
memory ports required in the FPGA. Normally, the system
requires 2k memory ports. However, with the addtion of
rotation, we have to support the ability to randomly address
a location in memory. In general, the system would require
4k ports for the patch to be rotated, and then another 2k
ports for the unrotated comparision patch.

Figure 1. Patch rotated without hardware in-
terpolation

Figure 2. Patch rotated with hardware inter-
polation

4



Bandwidth Size
k Slices Block RAM
25 3112
64 7881
100 10880

Table 1. Bandwidth vs resource usage for
FGPA implementation

However, a small limitation can dramatically simplify
the architecture and requirements. If the available angles
are limited to a limited number of fixed values, the com-
putation for interpolation system can be hardwired into the
FPGA. We provide eight segments between 0 and 180 de-
grees, allowing a car or person to rotate in the most expected
range of angles.

The interpolation is further simplified by only providing
linear interpolation with three bits of precision.

An example of the generated VHDL for a few points at
45 degrees is as follows:

The code is generated by a script parameterized to allow
for customizable angle selection, number of patches, num-
ber of elements per patch, and width of data.

The code is pipelined to allow it to run over 100MHz.
Note that the interpolation is computed from four individ-
ual memory ports. First, the horizontal weighted mean is
computed, and then the vertical weighted mean is computed
from the two horizontal means. Because the interpolation
is completely hardwired, there is no requirement for flex-
ibility in the memory controller. All of the memory ports
controlled for the interpolated patch have the same memory
address. Thus, only k memory ports are required for the in-
terpolation. If arbitrary angles were allowed and it was not
possible to use hardwired computational units, the system
would require 4k ports. This is due to requiring 4 corners
for each of the interpolated points.

The choice of computing in octal (three bits) allows for
highly efficient multiplication in the interpolation process.
Any interpolation is a maximum of three shifts and adds of
the pixel output from the patch memory. To normalize the
interpolated pixel, all that is necessary is right shift by three
digits.

When a patch is rotated, clearly it does lose some of its
data as the patch hangs off the corners of the new display
area. In these cases, the difference between the patches is
forced to zero, as the undefined data should not be counted
as a penalization.

The result from each of the rotation units is collected and
the best match is reported, along with the angle at which it
occured. The n2 results are buffered to SRAM and then
streamed out via DMA.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

Number of Patch Elements

T
im

e
 (

m
s)

computation time GPU

computation time FPGA

computation time CPU

Figure 4. FPGA computes entire patch in one
cycle (1000 patches)

6 Results

Tests preformed on CPU is dual 2.6 GHz Opteron An-
napolis Wildstar II FPGA board with dual Xilinx V2P100
and an NVIDIA GeForce 7900 GTX. The two cards are
based on the same motherboard, with the GPU on a PCI-E
bus interface and the FPGA on a full-width PCI-X interface.

Figure 6 illustrates the compute time vs the number of
patches. This figure does not include the setup time, cap-
tured in Figure 6. As the number of patches k increases,
the total amount of computation increases as O(n2). The
FPGA has a predictable computational curve, as it operates
in lockstep with one result generated every cycle at 50MHz.
After the system is loaded, the internal data is held entirely
in on-FPGA memory, providing guaranteed service.

For a 25 element patch, the GPU is somewhat more ef-
ficient than the FPGA. The FPGA wins when there are is
a huge amount of parallelism available. As the size of the
patch increases, the amount of parallel computation avail-
able also increases. Figure 6 demonstrates that a patch size
of 25 elements is roughly the high end of the range where
the GPU can out-perform the FPGA. The FPGA dataline
in Figure 6 is interesting because it is constant across the
varying number of patch elements. This is due to the ar-
chitecture of the patch computation on the FPGA; because
the FPGA has enough computation resources to compute a
large number of parallel patch elements in parallel, the in-
creased size of the patch does not result in increased latency
of computation.

Figure 6 illustrates the total time required for a single

5



int_0_6_9_h_l <= (6 * conv_integer(rd_data(9*10+3)));
int_0_6_9_h_r <= (2 * conv_integer(rd_data(9*10+2)));
int_0_6_9_h <= int_0_6_9_h_l + int_0_6_9_h_r;
int_0_6_9_l_l <= (6 * conv_integer(rd_data(8*10+3)));
int_0_6_9_l_r <= (2 * conv_integer(rd_data(8*10+2)));
int_0_6_9_l <= int_0_6_9_l_l + int_0_6_9_l_r;
int_0_6_9_l_t <= 5 * int_0_6_9_h;
int_0_6_9_r_t <= 3 * int_0_6_9_l;
int_0_6_9 <= int_0_6_9_l_t + int_0_6_9_r_t;
int_out(0)(69) <= int_0_6_9;

Figure 3. Interpolating Code Sample

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200

Number of Patches

T
im

e
 (

m
s)

CPU
GPU
FPGA

Figure 5. 25 element patch

set of 1000 patches compared against each other for various
sizes of patches. For these results, the total time includes
the time required for board setup on both the GPU and the
FPGA.

On the FPGA, this time can easily be amortized across
multiple sets of patches. While the patch data has to be
transferred for every set of patches, the FPGA program-
ming is a high one-time setup cost. After the FPGA is pro-
grammed, requiring hundreds of milliseconds, it can con-
tinue opererating indefinitely.

The GPU setup cost is largely initializing the card and
making requests through the OpenGL driver system. This
does not require nearly as much time as the FPGA initial-
ization, but is still noticeable compared to the CPU, which
has very little overhead except opening the input and output
files.

¡insert various discussion of beautiful rotational results
here¿

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

Number of Patch Elements

T
im

e
 (

m
s)

 total time GPU
 total time FPGA
 total time CPU

Figure 6. 1000 patches : Most of total time is
board setup (can be amortized)

References

[1] Advanced micro devices - graphics and media processors,
2006. http://ati.amd.com/.

[2] Nvidia corporation, 2006. http://www.nvidia.com/.
[3] M. Pharr, editor. GPUGems2. Addison Wesley, 2005.

6


