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Abstract 

We investigate how to exploit the dynamics of 
unsupervised online learning rules for fault tolerance in 
neural network classifiers. We first design an adaptation 
mechanism that keeps neural network weights at a useful 
fixed point for classification problems. We then 
demonstrate the robustness of the system when the 
network inputs are subjected to faults.  

1 Introduction 

There are at least two scenarios where traditional fault 
detection and mitigation schemes appear insufficient: 
extreme environment electronics and computing with 
next-generation nano-scale devices. These have been 
significant application drivers for the evolvable hardare 
community. Haddow and Remortel ask the question [1]: 
can adaptive systems that maintain a chemical state of 
equilibrium provide the basis for robust, fault tolerant 
evolvable hardware? In this paper we investigate this 
concept within the framework of artificial neural 
networks. We will design an adaptive algorithm that 
maintains equilibrium for a neural network classifier and 
then demonstrate how it can help increase fault tolerance.  

For applications like image and signal processing and 
real-time control, artificial neural networks, due to their 
distributed cellular architecture, can provide natural 
solutions for computing with fault prone devices. Some 
neural network architectures use system dynamics to solve 
computational problems e.g. associative memories and 
self-organizing maps. Solutions are represented as minima 
and the convergence of the system effectively provides 
self-organized fault tolerance [4].  

In this paper we suggest how self-organized fault 
tolerance might be introduced into a wider class of 
application. Instead of requiring the network dynamics to 
directly encode the desired computation, we observe that 
the dynamics need to only include the desired 

computation as a local minimum. We use the initial 
conditions to bootstrap the system to the desired 
minimum. The basin of attraction for the minimum then 
provides self-organized fault tolerance.  

We develop the approach for two-class classification 
problems. There are two modes of operation. First there is 
a design stage, where we use training data and supervised 
learning to find a good set of network weights for solving 
classification problems. Second there is a online stage 
where we imagine the network is deployed and classifies 
incoming data, one sample at a time. In the online stage 
we replace the static network weights of the supervised 
classifier with a dynamic update mechanism. During 
normal operation this mechanism maintains a stable 
equilibrium around the static network weights. When the 
neural network is subject to faults the mechanism can 
adapt weights to maintain performance.  

2 Neural network classifiers 

We use a Radial Basis Function (RBF) neural network 
illustrated in Figure 1 to solve classification problems. 

There are d  first layer nodes. The thi first layer node 
implements a Gaussian radial basis function with a fixed 
center ic and fixed width λ :  
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In the second layer there is a single node, which 
implements a weighted sum of first layer outputs: 
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The sign of the network output determines which class the 
sample will be assigned:  

 ( )z sign y=  (3) 
In the online stage faults are introduced into first layer 

nodes and the output node is assumed fault free. There are 
two types of faults that occur in 1st layer nodes:  



• Static faults cause a node to output a constant value 
regardless of its input. This value is chosen randomly 
from a uniform distribution between 0 and 1.  

• Dynamic faults cause the node to output a random 
value between 0 and 1 at each time step. 

The assumption that the output node is fault free is based on 
the two layer network being used as part of a much larger 
multi-layered system. If this is the case, faults in the output 
node could be dealt with by applying our strategy to 
subsequent layers i.e., the output node becomes a first-layer 
node. 

 
 

Figure 1.  Network classifier used in experiments 

3 Dynamics of unsupervised online learning 

Our goal is to find an adaptation mechanism for 
updating the output node weights that can help account for 
the first layer faults. We investigate adaptation 
mechanisms with the general form:  

 ( ), ,iw f yα∆ = w x  (4) 

where iw∆  is the change in the thi weight from one time 

step to the next, α  is a small constant and ( )f i  is some 

function that depends on quantities that are local 

(physically) to the thi weight. A useful framework for 
analyzing this type of update is stochastic gradient ascent 

of an objective function ( )J y , in which case (4) can be 

expressed as:  

 ( )i
i

d
w J y
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We denote the derivative of ( )J y with respect to y as 

( )g y , and the update is: 

 ( )T
i iw x gα∆ = w x  (6) 

Oja [2] was one of the first to suggest this type of rule 
for finding interesting statistical structure in data. 
Recently higher-order objective functions have been 
suggested, motivated from a number of fields including 
statistics [3], information-theory [4], and biology [5]. 
These objective functions have multiple local maxima and 
learning rules converge to one of many fixed points.  We 
suggest that the multiple fixed points of higher-order 
learning rules can provide a novel mechanism for fault 
tolerance. The basic assumption is that an objective 
function can be found that is related to, at some level, the 
desired behavior for the output node. If this is the case 
then it follows: 
• The adaptation mechanism will be in a local fixed point 

close to the desired value of w and hence will maintain a 
stable equilibrium during normal operation.  

• With faults present, the input statistics will shift the 
local fixed point and in some cases the adaptation 
mechanism will track this shift appropriately.  
A classifier aims to separate inputs into one of two 

classes. Therefore we suggest a reasonable objective 
function would measure multi-modality. Several objective 
functions have been suggested that measure multimodality 
[6]. We choose to minimize the fourth-order cumulant, or 
kurtosis:  

 ( ) { } { }24 23J y E y E y= −  (7) 

The weight vector w  must be bound to produce a 
stable learning rule. One way to do this to place a 
constraint on the variance: 

 { }2 1E y =    (8) 

This constraint can be included in the stochastic ascent 
learning rule by introducing a penalty term: 

 ( ) { }( ) { }4 23J y E y E yβ= − −  (9)  

Take the derivative of (9) with respect to y , 

substituting into (6) and multiplying by -1 (since we want 
the learning rule to minimize kurtosis) we arrive at  

 ( )2
i iw x y B Ayα∆ = − , (10) 

where A  and B are constants. The learning rule (10) is a 
generalized Hebbian learning rule, which we call Anti-
Hebbian and Hebbian (Ahah!).  

4 Detailed Experimental Design  

4.1 Design Stage 

In the design stage we use supervised learning and a 
training set to estimate the parameters for the RBF 



network in Figure 1. The training set consists of N 
samples. For each sample there is an input vector u and a 

class label { }-1,1l ∈ . The training data is divided into 3 

sets. Half of the samples are used during the online stage 
as a test set. The remaining samples are divided into two 
sets: training and validation. We use a Support Vector 
Machine (SVM) for the supervised learner [7]. This 
provides the number and location of centers ic in 

equation (1), as well as the weights w  and b of equation 
(2). Using cross-validation we also choose the SVM free 
parameters including the Gaussian width λ in (1) and the 
level of regularization.  

In the design stage we also set the Ahah rule constants 
A  and B .  These constants control the fixed point scale 

and therefore must be initialized close to the scale found 
by the supervised learner. We set 1A =  and average 
B over all inputs, where the expectation is taken over the 
training data:  
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The update for the output node bias in (2) also uses (10) 
but has a constant input, 1x = − . 

 2( )b y B yα∆ = −   (12) 

4.2 Online Stage 

During the online stage we randomly select one sample 
at a time from the test set and provide it as input to the 
RBF network. The network predicts a class label for the 
sample and we compare it to the desired label to estimate 
network performance over time. At a certain point some 
of the RBF nodes become faulty. In this paper we report 
on incremental failures where only one node becomes 
faulty at any one time but faulty nodes accumulate until 
the desired percentage of faulty nodes is attained. We 
compare three scenarios as faults are introduced: 

1. Normal: For each sample the RBF network simply 
predicts the class label for the input. The network makes 
no attempt to account for newly occurring faults. 

2. Ahah: For each sample the RBF network predicts the 
class label for the input and then updates each weight in 
equation (2) according to equation (10).  

3. Retrain: After faults occur we retrain the weights in 
equation (2) and then predict future samples with the re-
optimized classifier.  

4.3 Retraining 

The third scenario is used as an estimate for the best we 
can hope to achieve. To retrain, the original training and 
test sets are supplied as input to the faulty first layer. For 

each sample u  we record the (possibly faulty) RBF 
outputs x  producing a new training and test set. There 
are a number of supervised learning methods that could be 
used to re-optimize w  and b  based on the new training 
set. We use a linear program that uses the sum of absolute 
values as a weight regularizer instead of the sum of 
squares used by the SVM.  This is preferred since the 
faults we introduce are specific to particular nodes. When 
using the sum of absolute values for regularization the 
weights corresponding to faulty input nodes will tend to 
be set to zero more easily than if we used the sum of 
squares for regularization [7]. 

5 Experimental Results 

We generated a synthetic two-class, two-dimensional 
exclusive-or problem for initial experiments. Gaussian 
centers for each class are located along the diagonals of 

the input space: ( )1 2[ , ] 1, 1x x = ± ± . All Gaussians have 

a variance of 0.5.  We use 200 samples for both training 
and validation sets. For the test set we continue to draw 
new samples as required (typically 8000).  

Incremental dynamic faults were introduced according 
to a linear schedule between time steps 2000 and 6000. 
We take the average classification error (a running 
average over 300 time steps) between 7000 and 8000 and 
then averaged the result over 10 trials.  For the retraining 
scenario we re-optimized the network at time step 6500. 
Note that this is a best-case scenario, particularly when 
faults are introduced incrementally 

 

 

Figure 2.  Gradual fault introduction of dynamic 
faults in x-or classification network 

In Figure 2 we observe that retraining had poorer 
performance than doing nothing for low levels of faults. It 



is likely a more thorough search for the optimal level of 
regularization during supervised learning would lead to 
more similar performance. For Ahah, the result in figure 2 
is typical and the adaptation mechanism provides a 
substantial degree of fault tolerance. This was found for 
both static and dynamic faults.  

We repeated the experimental setup described for real-
world data obtained from the UCI Machine Learning 
repository [8]. We used the Ionosphere data set containing 
34 attributes and 351 samples. Of the 351 samples 
approximately 70% belong to one class and therefore in 
Figure 3 the maximum error is approximately 0.3. We 
resample the 175 test samples with replacement to obtain 
8000 online training points. In Figure 3 we observe Ahah 
again provides a substantial degree of fault tolerance. 

 

Figure 3.  Gradual introduction of static faults in 
Ionosphere classification network 

6 Discussion 

In comparison to retraining, our approach has several 
advantages. Retraining must take the system offline in 
order to pass the training data through the faulty 
processing nodes. In addition, the learning rule itself is 
often complicated (such as a Linear Program) and may 
require a microprocessor and additional memory. In 
contrast, our unsupervised approach can be applied 
without taking the system off-line and has far fewer fault 
prone control mechanisms. In addition, it may be possible 

that the update term 2b ay− can be implicitly calculated 
by using a specific nonlinearity (3) [3].  

Another advantage of our approach is rapid response to 
newly occurring faults. The performance of retraining will 
depend on how often the faults occur and how often the 
retraining can occur. If retraining is seldom then the 
system may suffer long periods of poor performance. If 

retraining is over-scheduled then computational resources 
will be wasted  

For a practical system, it is likely that coupling the 
unsupervised approach with retraining and/or more 
traditional fault detection strategies will be desirable. The 
unsupervised approach can provide fast response to new 
faults with little computational overhead. A supervised 
fault detection system could then detect operating 
conditions outside of the systems specification and 
provide mechanisms to reinitialize the unsupervised 
system as required.  

7 Conclusion 

We have suggested using the dynamics of an online 
learning rule to implement a form of self-organized fault 
tolerance. We showed that local minima of a multimodal 
objective function based on kurtosis can coincide closely 
with classifiers trained with supervised learning. We 
showed that the basins of attraction for these local minima 
can improve fault tolerance. Future research aims to 
develop and apply this concept to larger multi-layered 
neural network architectures. 
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