THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Lifting Entry / Atmospheric Flight vehicle

Sky Rover for In Situ Exploration of Titan and Venus

June 1, 2016 New Frontiers Tech Workshop Greg Lee LEAF Program Manager

The Science Case for LEAF

- The scientific exploration of the atmospheres of solar system bodies other than the Earth has been mostly limited by the inability to do sustained, in situ measurements of atmospheric properties
- Our LEAF family of vehicles removes that limitation by providing a long lived, maneuverable science platform that opens new science domains to the Planetary Science community. A few examples:
 - Determining atmospheric chemistry as function of time of day, altitude, & geographical location
 - Characterizing spatial & temporal variations of photochemical & thermo-dynamical processes in the atmosphere
 - Constraining multiple atmospheric parameters that impact gaseous fractionation, planetary dynamics, & meteorology
 - Measuring atmospheric dynamics & circulation characteristics at all scales from local phenomenology to global circulation
 - Identifying and measuring stratification properties, local versus global phenomenology, the impact of topography on atmospheric properties
 - Understanding spatial & temporal variations of planetary weather phenomena & their drivers

LEAF Opens Up a New Era of Atmospheric Science

LEAF System Leverages High TRL Components for New Class of PSD Platform

NORTHROP GRUMMAN

Image Credit: L'Garde RAPID **IEO** EYE Inflatable Exoatmos-Proven Inflatable pheric Object) Wings **Proven Space** Image Credit: L'Garde Inflation BALLOONS JWST Image Credit: NASA Sunshield Large membrane management & Combined Benefits LEAF deployment AIRPLANE Image Credit: NASA UCAS X47-B

UCAS X47-B Proven Airborne Autonomy (Takeoff, Landing, Aerial Refueling)

LARGE PAYLOAD / SCIENCE capability
 LONG LIFE, sustained exploration
 BUOYANCY for reduced operational risks
 1st SKY ROVER for Planetary Exploration

Global Hawk Autonomous High Altitude Long Endurance

LIFTING ENTRY eliminates aeroshells & complex parachutes
 CONTROLLED DEPLOYMENT prior to entry
 3-DIRECTIONAL MANEUVERABILITY

3 Northrop Grumman – L•GARDE LEAF Team

LEAF Sky Rover is Capable of Exploring Various Solar System Bodies with an Atmosphere

NORTHROP GRUMMAN

TITAN

- Long-lived flight at low altitudes with revisit capability
- High resolution surface imaging

MARS

- Controlled, targeted delivery of cargo/equipment to surface
- Low level imaging of specific targeted surface areas

EARTH

- ISS experiment or low-g life science experiment/ sample return
- High altitude atmospheric and surface interaction science
 - Non-NASA applications

VENUS

- Long duration, sustained in situ aerial exploration
- Capability to vary altitudes and revisit areas of interest

LEAF core subsystems are adaptable

- Venus H_2SO_4 protection (Teflon coating)
- Titan radioactive power (TAPC instead of eMMRTG)

VAMP Air Vehicle Key Features

NORTHROP GRUMMAN

Control Surfaces

- Deployable elevons & rudders
- Provides pitch control & steering capabilities
- Envelope
 Full buoyancy when propellers are off (i.e., night time or safe mode)
- Reduces operational risk

AV Skin

Buoyant

- Teflon-Al-Vectran laminate
- Protects against sulfuric acid & solar heating
- Retains buoyancy gas
 inside the envelope

Wind/TPS Teflon Aluminum Adhesive Vectran

Thermal Protection System

- Protects air vehicle during entry
- Nextel fabric/Pyrogel laminate (max temperature 1,478K)

Approved for public release; NGAS 16-0355 dated 2/23/16.

Equipment Bay

- ~30 m³ of volume for instruments & avionics
- 50kg instrument capacity
- Houses avionics & instruments

Electrical Power Subsystem

- Solar array
 (> 8 kW capability)
- Powers propellers, avionics & instruments

Propulsion Subsystem

- Provides altitude control & lift capability
- 2-blade, 2.5m diameter propellers
- Total of 400 450 N thrust
- Max speed ~30 m/s
- Max climb rate ~1.5 km/hr

VAMP's Lifting Entry Enables New Science

Atmospheric sampling opportunities 1080 seconds after entry

160 **Extensive analysis & engineering on VAMP entry characteristics** Time: 0 s Altitude: 160 km Lifting entry results in much more benign entry conditions Velocity: 7,350 m/s Basic entry data obtained during entry can be used for 140 meteorology & atmospheric dynamics investigation With sampling technology advances, sampling can occur Time: 140 s at high altitudes at hypersonic / supersonic regimes Altitude: 137 km 120 Velocity: 7,300 m/s Time: 680 s Altitude (km) 001 Altitude: 111 km As sunset Velocity: 3,400 m/s approaches, power reduction Air Sampling Time: 280 s Time: 450 s (current causes VAMP Altitude: 118 km Altitude: 112 km technology) to descend to Velocity: 7,000 m/s Velocity: 5,300 m/s Time: 1080 s 80 altitude of 100% Altitude: 95 km Mach 1 buoyancy: 50 km **PV Large** Velocity: 215 m/s VAMP* Entry Parameter Probe **Operating altitude range** Max Heat Rate (W/cm²) 14.6 750 60 Max Stagnation Temp (K) 1319 5100 Max G (Earth g) 2.5 323 40 * Alt = 112 km, t = 320 s, v = 6,409 m/s 2.000 1.000 3,000 .000 5.000 5.000 Range (km)

NORTHROP GRUMMAN

Approved for public release; NGAS 16-0355 dated 2/23/16

	Baseline VAMP	Pathfinder VAMP	Tech Demo VAMP
Objectives	Powered flight Full climb ability to 68 km altitude Greatly expanded science	Powered flight Limited climbing ability Nighttime science operations Expanded science	Lifting entry Operation in H_2SO_4 environment Basic science (temperature, pressure, wind speed, etc.)
Nominal Science Ops Duration	Up to 1 year	1 – 3 Months	1 – 4 Weeks
Nominal Altitude Range	50 – 65 km	Low to mid 50 km	Fixed (~50 km)
Science Instruments & Capabilities	See slide 15	See slide 15	See slide 15
Minimum Power	8,000 w (day); 100 w (night)	300 w (day); 100 w (night)	100 w (day); 20 w (night)
Notional Wing Span	59 m	30 m	8.5 m
Vehicle Mass	880 kg including instruments	450 kg including instruments	100 kg including instruments
Launch Vehicle	Atlas V 551 or Equivalent	Atlas V 401 or Equivalent	Piggy-back on Venus flyby spacecraft

Different VAMP Configurations Science Instruments

	Instruments	Science Objectives			
Baseline VAMP	Radiometer	 Radiative balance in & above clouds Integrated solar flux Search for & characterize lightning 			
	Micro-barometer	\square	Seismology; Gravity waves; Infrasonic		
	HD camera	\square	Cloud imagery; Atmospheric thunder; Outreach		
	Radar altimeter	\square	VAMP state vector determination		
	Microscopic imager	\square	Determination of shape and size of aerosol particles		
	Drop/Rise Sondes	N N N	Tropospheric structure & composition Surface sounding; Residual magnetism		
Path-	Gas Chromatograph Mass Spectrometer	V	Trace gases; Isotopic abundance		
finder	Mass Spectrometer	\square	Atmospheric noble gases; Isotopic abundance		
VAMP	Nephelometer	\square	Cloud particle microphysics (particle size, #, density, refractive index)		
L L	IR Spectrometer Surface thermal emission Geophysics				
	Meteorological	\square	Atmospheric structure, dynamics and turbulence		
	Electrical / Magnetic	N N	Electrical & magnetic properties & atmosphere & surface Search for & characterize lightning		
	Accelerometers	\checkmark	Wind turbulence and buffeting		
Tech	Pitot tubes (pressure sensors)	\checkmark	Atmospheric pressures & pressure gradients		
Demo	Thermocouples	\square	Atmospheric temperatures & temperature gradients		
VAMP	Wind velocity anemometers	\square	Wind speed / air speed		

Attribute	VAMP	Probe	Balloon	Airplane
Mission duration	Months to 1+ year	Hours – limited by extreme T & P	Days – limited by drifting winds leading to polar vortices	Weeks – limited by power & propulsion
3D Directional Control	Travels w/ winds; flight velocity control latitude	None	None	Travels w/ winds; flight velocity control latitude
Geographical Coverage	Tens of km in altitude, latitude control during day, repeatable	Single vertical profile, no latitude or longitude range, not repeatable	Some altitude control, limited latitude control, limited repeatability	Tens of km in altitude, latitude control during day, repeatable
Science Payload Mass & Power	Large ~ 50 kg, > 1 kW pwr daytime	Minimal < 10 kg, ~ 50 W	Minimal ~10 kg, ~50 W	Minimal ~10 kg, ~50 W
Deployment Risk	Low: Slow deployment in orbit	Moderate: Traditional entry behind aeroshell	High: Deploys rapidly during descent	High: Deploys rapidly during descent
Operational Risk	MODERATE: somewhat complex; safe mode buoyant, balloon-like	LOW: Simple to operate	LOW: Flight is maintained by inherent buoyancy	HIGH: somewhat complex; limited recovery time from safe mode

9 Northrop Grumman – L•GARDE LEAF Team

© 2016 Northrop Grumman Systems Corp.

THE VALUE OF PERFORMANCE.

