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INTRODUCTION

For the 4-8 GHz Debuncher Upgrade, attenuation of the microwave modes in the
beam pipe is very important. This note describes how to calculate the attenuation of
rectangular waveguide modes with absorber placed on the top and side walls of the
waveguide.

ABSORBER ON THE SIDE-WALLS OF THE WAVEGUIDE

The geometry of the problem is shown in Figure 1. Without the absorber, the
dominant mode in the waveguide will be the Transverse Electric to Z 1,0 mode (TEZ

10).
With the introduction of the absorber, the waveguide modes can no longer be classified
as transverse to Z (TEZ, TMZ) but can be classified as transverse to X (TEX, TMX).1 Since
the TEX

10 mode is the same as the TEZ
10 mode in the absence of absorber, and the

incident mode on the absorbing section of waveguide will be TEZ
10 , we will consider

TEX modes which are even in X only. TEX modes can be derived from a x-directed
electric vector potential:
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From Equations 1-3, electric field is:
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The magnetic field is:
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1 Time Harmonic Electromagnetic Fields, R.F. Harrington, McGraw-Hill, Inc., 1961, pg. 158



To meet the boundary conditions in Region I of Figure 1, the electric vector potential
must be of the form:
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The electric field in Region I is:
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The magnetic field in Region I is:
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To meet the boundary conditions in Region II of Figure 1, the electric vector potential
must be of the form:
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The electric field in Region II is:
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The magnetic field in Region II is:
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At the interface of x=a/2 Ey, Ez must be continuous:
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At the interface of x=a/2 Hy, Hz must be continuous:
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The solution to the Helmholtz wave equation requires:
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Subtracting Equation 23 from Equation 23 results in:
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Dividing Equation 22 by Equation 21 results in:
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The attenuation is:
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Figure 1. Geometry for sidebar absorbers.

POWER LOSS IN THE SIDE-BAR ABSORBER

This section deals with the relative power loss in the absorber. This information
can be used to determine where most of the heat will be generated in the absorber. We
will consider only the fundamental mode propagating in the waveguide (TEX

10). The
power density (power per unit volume) that is lost in the absorber is:
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The fields in the absorber are given by Equations 14-20. The fundamental mode has n=0.
Because we are only interested in the relative power loss let
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Then the power loss is given as:
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where it has been assumed that ε1 and µ1 have only real parts (no loss.)

ABSORBER ON THE TOP AND BOTTOM WALLS OF THE WAVEGUIDE

The geometry of the problem is shown in Figure 2. Without the absorber, the
dominant mode in the waveguide will be the Transverse Electric to Z 1,0 mode (TEZ

10).
With the introduction of the absorber, the waveguide modes can no longer be classified
as transverse to Z (TEZ, TMZ) but can be classified as transverse to Y (TEY, TMY). Since
the TMY

10 mode is the same as the TEZ
10 mode in the absence of absorber, and the

incident mode on the absorbing section of waveguide will be TEZ
10 , we will consider

TMY modes which are even in Y only. TMY modes can be derived from a y-directed
magnetic vector potential:
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From Equations 35-37, magnetic field is:
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The electric field is:

zy
y

2
2
y

2
y

2

eẑ
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To meet the boundary conditions in Region I of Figure 2, the magnetic vector potential
must be of the form:
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The magnetic field in Region I is:
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The electric field in Region I is:
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To meet the boundary conditions in Region II of Figure 2, the magnetic vector potential
must be of the form:
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The magnetic field in Region II is:
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The electric field in Region II is:
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At the interface of y=b/2 Hx, Hz must be continuous:
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At the interface of y=b/2 Ex, Ez must be continuous:
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The solution to the Helmholtz wave equation requires:
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Dividing Equation 55 by Equation 54 results in:
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The attenuation constant is:
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POWER LOSS IN THE TOP WALL ABSORBER

This section deals with the relative power loss in the absorber. This information
can be used to determine where most of the heat will be generated in the absorber. We
will consider only the fundamental mode propagating in the waveguide (TMY

10). The
power density (power per unit volume) that is lost in the absorber is:
Because we are only interested in the relative power loss let
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Then the power loss is given as:
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where it has been assumed that ε1 and µ1 have only real parts (no loss.)
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Figure 2. Geometry for absorber on the top and bottom of the waveguide.




