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A scraper scan � sending a scraper through a particle beam while measuring the intensity as 
a function of scraper position � is a common method of determining the profile of the beam.  At 
first glance, this seems to be a rather simple procedure.  Nevertheless, some care is required in 
the acquisition of the data and in the analysis if one is going to achieve an accurate result. 

I. Theoretical Overview 
Consider the transverse motion of a single beam particle at the longitudinal location of the 

scraper.  The quantity to be measured � the transverse emittance of the beam � is the area of the 
phase space trajectory that contains 95% of the beam.  An example of motion in x-x′ coordinates 
is shown in Figure 1.   

 
Figure 1 The motion of a particle of emittance 3.0 π mm-mrad in horizontal phase space at scraper A:RJ500 in the 
Accumulator.  The red numbers indicate the turn number for 20 consecutive beam turns. 

The basic procedure in what follows will be to transform the equations of motion to 
convenient coordinates, write down the two-dimensional transverse distribution of the beam, and 
relate that to the derivative of the beam intensity with respect to scraper position as the beam is 
scraped to extinction. 

A. Equations of transverse motion 
If betatron coupling can be neglected, the transverse motion is derived from the following 

Hamiltonian: 

 21 1 ( )
2 2

H x K s= +′ 2x  (1) 
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Here, the prime symbol (′) denotes differentiation with respect to the longitudinal coordinate, s.  
x′ is the dynamical variable that is canonically conjugate to x.  Application of Hamilton�s 
equations to equation (1) yields the familiar equation governing the linear transverse motion of 
the beam in an alternating gradient accelerator � Hill�s equation: x′′ + Kx = 0.   

Equation (2) gives a solution to Hill�s equation that explicitly shows the variation of x(s) 
with turn number (n). 
 ( 0( ) ( ) cos ( )nx s a s s nLβ µ= + )µ−  (2) 
L is the circumference of the ring.  µ(s) is the betatron phase, given by: 
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ν is the betatron tune.  The conjugate momentum, x′, is found by taking the derivatives of 
equations (2) and (3) with respect to s, yielding: 

 ( ) (0cos ( ) sin ( )n
ax s nL s nLα µ µ µ µ
β

 = − + − + + −′  )0  (4) 

where 2α β≡ − .  The area of the ellipse traversed by a beam particle in (x, x′) phase space is a 
dynamical invariant given by1: 
  (5) 2 2Area 2a x xx xπ γ α β= = + +′ 2′

where 
21 α

β

+
=γ . 

B. Transformation to (  Coordinates η,η)!
Since the area is an invariant, its value is preserved in canonical transformations.  Hence, it 

is useful at this point to find a canonical transformation from (x, x′) coordinates to new  
coordinates such that the transformed Hamiltonian is of the following form

( , )η η!
2: 

 21 1
2 2

K η= +! 2η  (6) 

The phase space trajectory in  coordinates is a circle.  Since the phase space area is a 
dynamical invariant, the area of the circle in  phase space is the same as the area of the 
ellipse in (x, x′) coordinates.  The transformation that accomplishes this is

( , )η η!
( , )η η!

3: 
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=

= −
 (7) 

                                                           
1 See, for example, D.A. Edwards and M.J. Syphers, �An Introduction to the Physics of High Energy Accelerators� 
section 3.2.4. 
2  should not be confused with η .   is defined in equation (8).  For the moment, one can view η  merely as a 
symbol representing the canonical momentum without necessarily connecting it with a derivative. 

η! ′ η! !

3 The generating function for this transformation is: 
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Combining equations (2) and (7) gives4: 
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where .  The trajectory of a particle in  coordinates is a circle of 
radius a.  The area of the phase space trajectory is πa

0( ) 2n sφ µ µ π= − + ( , )η η!
2, as expected.  If a95 denotes the phase 

space circle containing 95% of the beam, then the emittance, , is given by ε π . ε 2
95a=

C. Determination of the Transverse Distribution of the Beam 
It is assumed in what follows that, prior to scraping, the transverse distribution of the beam 

is static at the location of the scraper.  The transverse beam distribution can be written as 
, where  gives the number of beam particles in the phase space element 

between (  and ( .  The  distribution of the beam is given by: 
( , )N η η! ( , )N d dη η η η!

,dη η η+, )η η! )dη+! η
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( )dN η  gives the number of particles with η  between η  and .   dη η+

It is more convenient to deal with the amplitude, a, than .  Using , the 
distribution function  is determined from  as follows: 

η! 2 2 aη η+ =!
( , )N a dη ( , )N dη η η!

)η η!
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where .  Equation (9) becomes: (( , ) , ( , )N a N aη η η η= ! )
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What remains is to relate  to what is measured in a scraper scan.  The problem is 
greatly simplified by the observation that  depends only on the amplitude, a.  This can be 
seen as follows: Let 

( , )N aη
( , )N aη

0 , where N( , )n aη ≡

( )a
η

( , )N aη N 0 is the total number of beam particles.  
 is the joint probability of a beam particle with η  between η  and η  and with a 

between a and a + da.  If G  is the probability distribution of a and  is the conditional 
probability distribution of  for a given value of a, then 

( , )n a d dη η a ηd+
)( | aηF

]]  (12) [ [( , ) ( | ) ( )n a d da a d a daη η η η= iF G
Since ,  depends on a and φ .  Theφ  values of the particles in the beam, due 
to filamentation, are uniformly distributed between 0 and 2π.  Thus, η  is uniformly distributed 
between �a and a.  Therefore,  is given by: 

cosaη φ= ( | )aηF

( | )aηF
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η4 Note: From equation (8): η .  This also follows from the application of Hamilton�s equations to 

equation (6). 
cosa φ= − = −!!

- 3 - 



Pbar Note 665 

( , )n aη  (and hence ) depends only on a.  Thus, ( , )N aη
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Therefore, 
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g(a) is the amplitude distribution function.  The number of particles, dN(a), with amplitudes 
between a and a + da is given by:  (see Figure 2). ( ) ( ) 2dN a g a adaπ= i

 
Figure 2 The two-dimensional distribution of the beam in  coordinates as the beam is scraped.  The time 
that the scraper remains in the neighborhood of each amplitude is long enough for all the particles oscillating with 
that amplitude to interact with the scraper and be lost from the beam. 

( , )η η!

If xs is the instantaneous position of the scraper, then s sa is the corresponding 
scraper amplitude.  The quantity that is measured during a scraper scan is the amount beam 
remaining as a function of x

½β−= x

-½
s, .  I(a( ) ( )sI a I xβ=

( )sI a π=

s) is given by: s

0
2 ( )sa

g a ada∫  (16) 

Figure 3 shows a plot of I(as) from data taken during an actual scraper scan. 
The amplitude distribution is obtained by differentiation of equation (16). 

 1 (( )
2

dI ag a
a daπ

=  
)
  (17) 

The quantity in brackets in equation (17) is obtained by differentiation if the  data obtained 
during the scraper scan.  Figure 4 shows a plot of the g(a) distribution function that is derived by 
differentiation of the I(a

( )sI a

s) data in Figure 3.   
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Figure 3 I(as) versus as for a vertical scraper scan of proton beam in the Accumulator. 

 
Figure 4 The amplitude distribution function, g(a), derived from an analysis of the scraper scan shown in Figure 3.  
The �hole� in the distribution at small amplitudes seems to be a consequence of heating the beam prior to the scraper 
scan. 

If I0 is the beam intensity prior to the scraper scan, the emittance of the beam is determined 
by solving for a95 � the value of a for which .  a0( ) 0.95I a I= i

95a
g a adaπ

95 is given by: 

  (18) 0 0
0.95 2 ( )I = ∫
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Once a95 is determined, the emittance, , is then given by: ε
  (19) 2

95aε π=

Once g(a) is known, the  distribution of the beam can be calculated by substitution of 
equation (15) into (11) .  The x distribution can then be calculated from the η  distribution by: 

η
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The resulting x distribution is given by: 
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 (21) 

Figure 5 shows the x distribution derived from the amplitude distribution shown in Figure 4. 

 
Figure 5 x-distribution of the beam calculated from the g(a) given in Figure 4.  The red line is a gaussian with σ 
equal to the root-mean-square of the x-distribution. 
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II. Analysis of scraper scans performed in August and September of 2001 
The analysis of scraper scan data taken during two beam study periods on August 29, 2001 

and September 9, 2001 is presented here.  Table 1 shows the relevant beam conditions pertinent 
to each scan.  The beam current readouts differ in precision and update rate.  A:IBEAM is a high 
precision beam current readout but its update rate was too slow to keep up with the scraper 
movement.  The update rate of A:IBEAMV is adequate, however it is somewhat lacking in 
precision.  The results of the analysis of these scans are summarized below in Table 2. 

Table 1: Scraper Scan Conditions 

 August 29 Scans September 9 Scans 
Orbit Extraction Orbit Core Orbit 
Beam heated prior to scan No Yes 
Beam Current Readout A:IBEAM A:IBEAMV 

The amplitude and x distributions are given in Figure 6 through Figure 9 below. 

  
Figure 6 The amplitude (a) distribution and the x distribution, F(x), for the horizontal scraper scan of 
August 29, 2001.  The red trace on the F(x) graph is a gaussian with σ = xrms. 

  
Figure 7 The amplitude (a) distribution and the x distribution, F(x), for the vertical scraper scan of 
August 29, 2001.  The red trace on the F(x) graph is a gaussian with σ = xrms. 
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Figure 8 The amplitude (a) distribution and the x distribution, F(x), for the horizontal scraper scan of 
September 9, 2001.  The red trace on the F(x) graph is a gaussian with σ = xrms.  The �hole� in the distribution for 
a < 0.01 mm ½ is probably caused by heating the beam prior to the scraper scan. 

  
Figure 9 The amplitude (a) distribution and the x distribution, F(x), for the vertical scraper scan of 
September 9, 2001.  The red trace on the F(x) graph is a gaussian with σ = xrms.  The �hole� in the distribution for 
a < 0.01 mm ½ is probably caused by heating the beam prior to the scraper scan. 

Table 2: Scraper Scan data and Results 

Date Plane A:IBEAM 
(mA) 

A:EMITH(V) 
π mm-mrad-mA 

A:EMITH(V)N 
π mm-mrad 

frev 
(Hz) 

2
95aε π=  

π mm-mrad 
8/29/2001 H 3.278 8.352 2.547 628764.7 3.213 
8/29/2001 V 2.808 7.488 2.667 628764.8 4.352 
9/09/2001 H 6.656 23.29 3.552 628887.7 5.751 
9/09/2001 V 6.529 27.44 4.202 628887.5 5.935 

The most obvious use of the information in Table 2 is for the calibration of the 
Accumulator emittance monitors.  The use of scraper scans to calibrate the emittance monitors 
must be approached carefully.  The inputs to the Accumulator emittance monitors are transverse 
schottky pickups that are resonant at 79 MHz.  The schottky signal from one of these pickups is 
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proportional to the root-mean-square dipole moment of the beam.  Thus, the output of the 
emittance monitors can be written as: 
 2 2

bV d xε ∝ = I  (22) 
where d is the dipole moment of the beam and Ib is the beam current.  The 95% emittance can be 
written as: 
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=
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βsc is the beta-function at the schottky detector and F is a form factor that is equal to one if the 
transverse distribution is a gaussian.  εg is the 95% emittance beam with a gaussian transverse 
distribution.   

Calibration of the emittance monitors involves writing the measured emittance in terms of 
the output of the emittance monitor.  If k is the proportionality constant between the emittance 
monitor output and the rms dipole moment of the beam, then the 95% emittance can be written 
as: 
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=

=
 (24) 

K is a constant depending only on numerical factors and the beta-function at the schottky pickup.  
Since the emittance monitor is sensitive to only one moment of the beam distribution, some 
assumptions about the shape of the transverse distribution must be made (i.e. one must pick a 
value for F).  Generally, a gaussian distribution is assumed, thus setting F = 1.  Table 3 shows 
that this assumption gives rise to an uncertainty in the measurement of the emittance that can be 
as large as 20%. 

Table 3: Form factors from Scraper Scan data 

Date Plane 
2
95aε π=  

π mm-mrad 
εg 

π mm-mrad 
F 

8/29/2001 H 3.213 2.811 1.143 
8/29/2001 V 4.352 3.626 1.200 
9/09/2001 H 5.751 7.039 0.817 
9/09/2001 V 5.935 7.036 0.843 
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