L2-View/EASI

(Earth Atmosphere Solar-Occultation Imager)

Jay Herman Lee Feinberg Jim Watzin

CO₂, CH₄, H₂O, O₃, O₂, N₂O

L2-View/EASI

J. Herman

L. Feinberg

J. Watzin

(Earth Atmosphere Solar-Occultation Imager)

*Solar Occultation from Lagrange-2
*Fourier Transform Imaging Spectrometer
*10 Meter Interferometer (lightweight design)

Wavelengths: 1 – 4 microns Resolution: 1 nm or better Spatial Resolution: 1 to 2 km CCD: 1K x 1K or Linear Diode Array Available Solar Flux ~ 12 - 15% of Total Sun

L2-View (EASI): A Mission Concept Earth Atmosphere Solar-Occultation Imager

- 1. If a mission to Lagrange Point 2 (a position behind the Earth relative to the Sun) were contemplated, what science could be accomplished?
- 2. Is there unique Earth science that can be accomplished from this orbit?
- **3.** Are there problems that would prevent such a mission?
- 4. Is there other unique science that can be accomplished from the same spacecraft?

1. If a mission to Lagrange Point 2 (a position behind the Earth relative to the Sun) were contemplated, what science could be accomplished?

Ans: Measure Greenhouse Gases CO₂, CH₄, H₂O, O₃, O₂, N₂O

2. Is there unique Earth science that can be accomplished from this orbit?

Ans: Produce the FIRST 3-D Mapping of Greenhouse gases Height 2 km: Latitude 0.1° Longitude 2°

3. Are there problems that would prevent such a mission?

Ans: NO

Launch and orbit require conventional hardware Spacecraft is derived from Triana Instrument optics are conventional (flat mirrors) GSFC has built in-house several IR Fourier Transform Spectrometers (e.g., CIRS on Cassini and FIRAS on COBE).

The 10 meter interferometer is new, but within today's engineering capabilities.

- 4. Is there other unique science that can be accomplished from the same spacecraft?
- **Ans: YES**
- **Unique Solar Observations at high spatial resolution in the Near IR**
- **Observations of the Magnetotail**
- **Observations of Lightning**
- **Observations of Aurora**
- **Observation of Nighttime cloud cover**

Grid 1000000.0 km (100000.0 km)

Мооп

L2-View EASI Trajectory to L-2

EASI Solar Occultation Mission

L-1 and L-2 points move with the Earth

Relationship of L-2 Orbit Position to the Earth's Umbra

The spacecraft is always illuminated by the direct sun. This means that the atmosphere can be continuously viewed in solar occultation.

View of the Earth-Sun System from the L-2 Orbit

If the Earth's atmosphere is to always be seen against the Sun, the Lagrange orbit is close to the Sun-Earth line.

Note: The edge of the Sun is 53,500 km of the Sun's disk, but only extends 440 km above the Earth's disk

20 km limb view 1 to 2.5 microns CO_2 , CH_4 , O_2 , H_2O Band width 1 to 10 nm H2O: 1.12, 1.3 microns CO2: 1.45 microns

O2: 1.25 microns

- 5 km limb view
- 1 to 2.5 microns
- H2O: 1.3 microns
- CO2: 1.45 microns
- **O2:** 1.25 microns

3.50

EASI and Triana Synergy

EASI: 1.5x10⁶ km Triana 1.5x10⁶ km From Earth

BowShock 5x10⁴ km

Day and Night Obs of Clouds for Climate Studies

EASI and Triana can make unique observations of Solar disturbances outside of the Bowshock and within the Magnetotail. L2-View/EASI Imaging Solar Occultation of the Earth from L-2

Additional Science:

Measurements the Earth's magnetotail Magnetic field, electron, proton and alpha velocity View of the aurora Correlations with measurements at L-1

Lightning: Observations of full night disk to observe the frequency and location of lightning.

Full disk observations of clouds and surface features at 4 microns.

Spectral mapping of the solar limb, observations of solar granulation, and other solar features (sunspots, flares).

L2-View: EASI Earth Atmosphere Solar-Occultation Imager

Goals: Measure altitude profiles for 5 major Greenhouse Gases for the entire Earth and the atmospheric pressure profile

Produce a 3-D Map of the distribution of CO₂, H₂O, CH₄, O₃, N₂O, O₂

Altitude 2 km ResolutionLatitude0.1°Longitude2°

Technical Challenges:

Fly large aperture (10 meter) interferometer
Extensive use of lightweight materials
Highly controlled orbit at L-2
High data rate with advanced antenna design

Block Diagram of EASI Interferometer With Beam Entering An Imaging Fourier Transform Spectrometer

Advanced L2 Mission Architecture Using Wide-field Imaging Interferometry

Boom Technology Has Heritage on SIM

•The thermal control environment will be much more stable than SIM

- •SIM requires supporting many different pointing angles relative to sun
- SIM boom technology should easily meet our requirements
- •SIM approach to isolate reaction wheel vibrations should also work

GSFC Spatial-Spectral Imaging Interferometry Roadmap

Time from Present

Technology Readiness:

Technology	Current	Challenge	Risk
1-D Spatial-Spectral Interferometer + Algorithms (2-D algorithms desirable)	.5m Wide Field Imaging Interferometer Testbed in Build (funded by IR+D, ROSS)	Extension to large 10 meter aperture for space flight	MED
Light-weight beam splitters Low vibration shutters	New Disk shutter	Lightweight Low vibration	Low MED
Extremely stable 10 meter lightweight truss	SIM composite material truss	Vibration/thermal control to avoid complex metrology	MED
Repeatable tip-tilt mirrors Delay lines Near IR detectors Light flat mirrors	Current Techn. CIRS Heritage Current Techn. Current Techn.	Need flight qualified Modify for Near IR Tailored readout desirable Flat pass band for BS	LOW LOW LOW

L2-View EASI Spacecraft and Instrument

EASI Stowed Configuration on Triana-Heritage Gyroscopic Upper Stage

EASI Instrument and Spacecraft Mounted in Shuttle Carrier

