University of California, Berkeley Physics 105 Fall 2006 Section 2 (*Strovink*)

ASSIGNMENT 1

Reading:

SCCM 1.1-1.5. Taylor 1.7, p. 623, 4.8, Example 15.6, 9.3-4, pp. 401-402.

1. Taylor Problem 1.23. *Hint:* Because $\mathbf{c} = \mathbf{b} \times \mathbf{v}$ is \perp to \mathbf{v} , \mathbf{v} lies in the plane defined by two different vectors that are both \perp to \mathbf{c} . Take these two vectors to be \mathbf{b} and $\mathbf{b} \times \mathbf{c}$. Write \mathbf{v} as a linear sum of them and solve for the linear coefficients.

2.

(a.) Prove for any vector **b** and index i that

$$\epsilon_{ijk}b_jb_k=0\;,$$

where ϵ_{ijk} is the Levi-Civita density, and summation over repeated indices is implied.

(b.) Prove for any i, j, l, m that

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl} ,$$

where δ_{ij} is the Kronecker delta function.

3. Work Taylor Problem 1.23 again, as before starting from

$$\mathbf{v} = \alpha \mathbf{b} + \beta \mathbf{b} \times \mathbf{c} \; ,$$

but this time writing all vector products in component form using the Levi-Civita density. Do not use any vector relations or identities. The results of Problem 2 will help.

4. Taylor Problem 1.47.

5. Taylor Problem 1.48.

6.

(a.) Deduce from first principles the general form of a real orthogonal 2×2 matrix.

(**b.**) Suppose this

Suppose this 2×2 matrix is a submatrix of a 3×3 matrix, whose third row and third column vanish except for the (3,3) element which is unity. What restrictions are placed upon the form of the 2×2 matrix if the 3×3 matrix corresponds to a proper rotation? To an improper (parity-inverting) rotation? Explain.

7. Taylor Problem 10.48.