University of California, Berkeley
Physics 105 Fall 2006 Section 2 (Strovink)

ASSIGNMENT 1

Reading:

SCCM 1.1-1.5.
Taylor 1.7, p. 623, 4.8, Example 15.6, 9.3-4, pp. 401-402.

1. Taylor Problem 1.23. Hint: Because $\mathbf{c}=\mathbf{b} \times \mathbf{v}$ is \perp to \mathbf{v}, \mathbf{v} lies in the plane defined by two different vectors that are both \perp to \mathbf{c}. Take these two vectors to be \mathbf{b} and $\mathbf{b} \times \mathbf{c}$. Write \mathbf{v} as a linear sum of them and solve for the linear coefficients.

2.

(a.)

Prove for any vector \mathbf{b} and index i that

$$
\epsilon_{i j k} b_{j} b_{k}=0,
$$

where $\epsilon_{i j k}$ is the Levi-Civita density, and summation over repeated indices is implied.
(b.)

Prove for any i, j, l, m that

$$
\epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l},
$$

where $\delta_{i j}$ is the Kronecker delta function.
3. Work Taylor Problem 1.23 again, as before starting from

$$
\mathbf{v}=\alpha \mathbf{b}+\beta \mathbf{b} \times \mathbf{c},
$$

but this time writing all vector products in component form using the Levi-Civita density. Do not use any vector relations or identities. The results of Problem 2 will help.
4. Taylor Problem 1.47.
5. Taylor Problem 1.48.

6.

(a.)

Deduce from first principles the general form of a real orthogonal 2×2 matrix.
(b.)

Suppoes this 2×2 matrix is a submatrix of a 3×3 matrix, whose third row and third column vanish except for the $(3,3)$ element which is unity. What restrictions are placed upon the form of the 2×2 matrix if the 3×3 matrix corresponds to a proper rotation? To an improper (parity-inverting) rotation? Explain.
7. Taylor Problem 10.48.

