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First, a couple of reminders.  In type set text, a vector is shown in bold face
type e.g. A. In hand written text, a vector is shown by an arrow e.g. ›A. The usual
expansion of a vector in Cartesian coordinates is:

A = ›A = Axû + Ayë + Azê where: û,ë,ê are the unit vectors (1)
in the x, y and z directions.

This notation for a vector is very compact and quite useful. However, there  are
occasions when a more direct way to do algebra or calculus on the components of a
vector is required. The notation that allows this is called tensor or component
notation. Both notations are very useful. You should become conversant with both.
We describe tensor notation below.

Another Way to Represent a Vector

Let: A1 stand for Ax and û1 stand for û
A2 stand for Ay and û2 stand for ë
A3 stand for Az and û3 stand for ê

Then (1) may be written as: A = Â
È=1

3
A È ûÈ

Some short hand: A = Â
È=1

3
A È ûÈ = AÈ ûÈ

This is the Einstein convention. Any index that is repeated, È in this case, we sum
over the values 1 to 3.

More short hand:

We don’t need ûÈ!  That is, AÈ means the È th component of A or ›A,  the ûÈ is
redundant. This is the crux of tensor notation. That is, just write AÈ with È = 1,2,3 to
stand for the any one of the components of A. (The extension of this concept to
other than three dimensions is obvious.)

Examples of Use in Some Fundamental Vector Operations   

Addition and subtraction:

AÈ = BÈ ± CÈ is the È th component of A = B ± C.



Scalar or dot product:

AÔBÔ is the same as A°B (remember, we sum over repeated 
indices).

Differential vector operators:

Ç
ÇxÈ

    is the È th component of à  = û 
Ç

Çx    + ë 
Ç

Çy    + ê 
Ç

Çz    

for example:
Çƒ 
ÇxÈ

    is the È th component of grad ƒ or àƒ

ÇAÔ 
ÇxÔ

    is the same as div A or à°A.

What about a cross product?

A ‡ B = 
Ô
Ô
Ô

Ô
Ô
Ôû ë ê

Ax Ay Az

Bx By Bz

    = û(AyBz - AzBy)  + ë(AzBx - AxBz) 

(2)
+ ê(AxBy - AyBx ).

To see how to handle this in component or tensor notation, we need to digress into
symbolic ways of writing and manipulating determinants.

Digression into Determinants

    First   , we define the Kronecker symbol ∂ÈÔ

∂ÈÔ = 0 if È ≠ Ô (3)
= 1 if È = Ô

    Second    , we define the Levi Civita symbol ´ÈÔ

´ÈÔ = 0 if any two of È, Ô,  are equal (4)
 = +1 if ÈÔ = 123, 231 or 312

= -1 if ÈÔ = 321, 213 or 132

The values of ÈÔ that give +1 are called even permutations, while those 
that give -1 are called odd permutations. This is because the number 
of interchanges of pairs of indices that are necessary to create the 



sequence 1,2,3 are even for the +1 case and odd for -1. Try it! A short hand 
for this definition is often found in physics texts.  It goes something like "´ÈÔ  
is the totally antisymetric quantity with ´123 = 1".

    Third    , we look at the determinant of a 3‡3 matrix e.g.

(a) = 
Ë
Á
Ê

¯
˜
ˆa11 a12 a13

a21 a22 a23

a31 a32 a33

    

The determinate of the matrix (a) may be written as:

det a = ´ÈÔ a1È a2Ô a3 or det a =  ´ÈÔ aÈ1 aÔ2 a3 (5)

Check it yourself. You will see that these are just the usual row or
column expansions. The ´ÈÔ just takes care of the alternating signs.

Now Back to the Cross Product:

In light of (2) and (5), we see that the È th component of C = A ‡ B is:

CÈ = ´ÈÔ AÔB

To make use of this, we need to learn more of the algebra of ∂ÈÔ  and ´ÈÔ.

Algebra of ∂ÈÔ:

∂ÈÔ ∂Ô = ∂È (6)

∂ = 3 (7)

To prove these, just write out the indicated sum.

Algebra of ´ÈÔ:

 ´ÈÔ aÈÚaÔ˜aˆ = ´Ú˜ˆ det a. (8)

´ÈÔ´Ú˜ˆ = 
Ô
Ô
Ô

Ô
Ô
Ô∂ÈÚ ∂È˜ ∂Èˆ

∂ÔÚ ∂Ô˜ ∂Ôˆ

∂Ú ∂̃ ∂ˆ

   (9)

The proof of each of these is similar. Below, I prove (9) and leave the 
proof of (8) as an exercise.



1. If any two of È,Ô, or any two of ,Ú,˜ are equal, the left side = 0 by the
definition of ´ÈÔ (4), and the right side is 0 as the determinant has either two
equal rows or two equal columns.

2. For È,Ô, = 123 and Ú,˜,ˆ = 123, the expression is clearly true. The left 
side is 1‡1 and the right side is the determinant of the unit matrix.

3. Under the interchange of any two of either È,Ô, or Ú,˜,ˆ, the left side 
changes sign. The right side changes sign as this is the interchange of 
either two rows or two columns of the determinant which changes its 
sign.

Thus, all possible values of the indices give an equality.

Using (9), we can evaluate some very useful expressions.

´ÈÔ´˜  ̂= 
Ô
Ô
Ô

Ô
Ô
Ô∂È ∂È˜ ∂Èˆ

∂Ô ∂Ô˜ ∂Ôˆ

∂ ∂̃ ∂ˆ

   È.e. sum over one index ()

= ∂È(∂Ôm∂kn - ∂Ôˆ∂̃ ) - ∂È˜(∂Ô∂ˆ - ∂Ôˆ∂) + ∂Èˆ(∂Ô∂̃  - ∂Ô˜∂)

by (5) and (6):

= ∂Ô˜∂Èn  - ∂Ôˆ∂È˜  - ∂È˜∂Ôˆ + 3∂È˜∂Ôˆ + ∂Èˆ∂Ô˜ - 3∂Èˆ∂Ô˜

or ´ÈÔ´˜ˆ = ∂È˜∂Ôn - ∂Èˆ∂Ô˜     Sum over one index    (10)

and ´ÈÔ´Ôˆ = - (∂ÈÔ∂Ôn - ∂Èˆ∂ÔÔ) = 2∂Èˆ     Sum over two indices   (11)

and  ´ÈÔ´ÈÔ = 6     Sum over all 3 indices   (12)

Examples of Applications to Vectors   

Example 1

You learned somewhere that:

 A ‡ (B ‡ C) = B(A°C) - C(A°B) (Bac - Cab rule)

We prove this using tensor notation.

 [A ‡ (B ‡ C)]È = ´ÈÔAÔ´Ú˜BÚC  ̃= ´ÈÔ´Ú˜AÔBÚC˜



by (10): = (∂ÈÚ∂Ô˜ - ∂È˜∂ÔÚ)AÔBÚC  ̃= BÈ(AÔCÔ) - CÈ(AÔBÔ)

= BÈ(A°C) - CÈ(A°B)

Example 2

[à ‡ (A ‡ B)]È = ´ÈÔ 
Ç

ÇxÔ
    ´Ú˜AÚB  ̃= ´ÈÔ´Ú˜

Ç
ÇxÔ   

AÚB˜

by (9): = (∂ÈÚ∂Ô˜ - ∂È˜∂ÔÚ) 
Ç

ÇxÔ
   AÚB˜

= 
Ç

ÇxÔ
(AÈBÔ)    - 

Ç
ÇxÔ

(AÔBÈ)    = AÈ
Ç

ÇxÔ   
BÔ + BÔ

Ç
ÇxÔ   

AÈ - AÔ
Ç

ÇxÔ   
BÈ - BÈ

Ç
ÇxÔ   

AÔ

= AÈ(à°B) + (B°à)AÈ - (A°à)BÈ - BÈ(à°A)

Example 3

The vector r = xû + yë + zê appears often.

We may write r in component notation as: rÈ = xÈ

Then:

div r = 
Ç

ÇxÈ
  xÈ  = ∂ÈÈ   by (7) this is equal to 3

(curl r)È = ´ÈÔ 
Ç

ÇxÔ
   x = ´ÈÔ ∂Ô  by (3) and (4) is equal to 0

Other examples will be found on a future problem set.

Determinants of Matrices of Other Orders   
(This section is for interest only.  We will not need it for 110A)

Certainly determinants of matrices of order other than 3 ‡ 3 are of interest
and important.  Our definition of the Levi Civita symbol was for 3 ‡ 3 matrix. An
examination of the definition for this case (4) shows that it can be defined in the
same way for any size matrix.  That is for an n ‡ n matrix we just write ´ÈÔ.... with
the dots indicating there are a total of n indices. It is the totally antisymetric
quantity with ´123...n = 1.



With this more general definition the equivalent of (5) becomes:

det a = ´ÈÔ ...a1È a2Ô a3... (13)

For example for n = 2. we have:

det a = ´ÈÔ a1Èa2Ô

or for n = 4:

det a = ´ÈÔÚ a1Èa2Ôa3a4Ú

The very important relations (8) and (9) generalize in the obvious way.

 ´ÈÔ.... aÈÚaÔ˜aˆ.... = ´Ú˜ˆ.... det a. (8')

´ÈÔ....´abc.... = 

Ô
Ô
Ô
Ô

Ô
Ô
Ô
Ô∂Èa ∂Èb ∂Èc • •

∂Ôa ∂Ôb ∂Ôc • •

∂a ∂b ∂c • •

• • • • •

   (9')

If we contract two ´ s on the last m indices it can be shown (I hate those words but they
save space) to be:

´....´.... contracted on the last m indices = m! ‡ det a' (14)
where: a' is the first n-m minor of the matrix:

Ë
Á
Á
Ê

¯
˜
˜
ˆ∂Èa ∂Èb ∂Èc • •

∂Ôa ∂Ôb ∂Ôc • •

∂a ∂b ∂c • •

• • • • •

   

For example:

 for n = 3 m = 1 the contraction is ´ÈÔ´ab = 1! ‡  Ô
Ô
Ô

Ô
Ô
Ô∂Èa ∂Èb

∂Ôa  ∂Ôb
    

which is equivalent to (10).

or for n = 4 m = 2.

´ÈÔÚ´abÚ = 2! ‡ (∂Èa∂Ôb - ∂Èb∂Ôa)

which is equivalent to (10) for a 4 ‡ 4 matrix.



The cofactor of the ÈÔ th component of a matrix is defined as (-1)È+Ô times the
determinant of the matrix with the È th row and the Ô th column removed.  For an n
‡ n matrix it can be formally written as:

cÈÔ  = 
1

(n-1)!    ´Èabc...´Ôå∫©... aaå ab∫ ac© .... (15)

Mathematicians call the transpose of the matrix made up of the elements cÈÔ the adjoint
of the matrix aÈÔ.  Written Adj A.  Note: this is not what we call adjoint in physics.
Using the algebra of the Levi Civita symbol it is easy to show:

A Adj A = (1) det A

or aÈÔ cÔT = aÈÔ cÔ = ∂È  det a (16)

This leads to an expression for the inverse of aÈÔ:

A-1 = 
Adj (A)

|A|    

or aÈÔ -1 = 
cÈÔT

| aÈÔ |
   (17)

Try it with something simple like:

Ë
Á
Ê

¯
˜
ˆ1 2 3

2 3 1
3 1 2

   

Now it is interesting to contemplate what all this means with respect to
vectors.  Look at the cross product in 3 dimensions.  It was defined as:

CÈ = ´ÈÔ AÔB.

Consider some other dimension.  Can you make a similar definition?  For example:

for n = 2 ´ÈÔ AÈBÔ or for n = 4 ´ÈÔÚ ABÚ

The problem is these do not produce vectors.  The first is a scalar (È.e. has only one
value) and the second is a 4 ‡ 4 matrix!  The cross product, as we know it, exists
only in 3 dimensions.   We will learn much more about this as we learn about
tensors and there meaning in physics.


