
Volumetric Semantic Segmentation using Pyramid Context Features
Supplemental Material

Jonathan T. Barron1 Pablo Arbeláez1 Soile V. E. Keränen2

Mark D. Biggin2 David W. Knowles2 Jitendra Malik1

1UC Berkeley 2Lawrence Berkeley National Laboratory
{barron, arbelaez, malik}@eecs.berkeley.edu {svekeranen, mdbiggin, dwknowles}@lbl.gov

1. Complexity

Our “pyramid filtering” insight enables exact and ex-
tremely efficient per-voxel classification with minimal
memory overhead. We will now demonstrate our improve-
ment over existing techniques empirically and theoretically.

For an empirical demonstration of efficiency, consider
the following two alternatives to pyramid filtering: 1) the
“sliding window” approach: iterate through every voxel in
the input volume, and for each voxel construct and clas-
sify a feature vector. 2) we could use the fact that our fea-
ture and classifier are both linear, and could therefore be
reduced to a single linear operation which amounts to filter-
ing the volume with an extremely large filter — one with a
support as large as the input volume. Such filtering is in-
tractably expensive in the spatial domain, but is much more
efficient in the Fourier domain: we can compute the FFT
of a volume and a filter, do a component-wise multiplica-
tion in Fourier space, and then invert the FFT. In the case
in which we have multiple feature channels, this can be
sped up by summing the filter-responses in Fourier space
and inverting the FFT only once. We will refer to this as the
“FFT” approach. The “FFT” approach can be sped up by
assuming that the Fourier-domain filters have been precom-
puted, which reduces computational demands but dramati-
cally increases memory overhead. We will refer to this pre-
computed Fourier technique as “FFT+caching”. The sliding
window approach is extremely common in object detection
[5], and the FFT approach has also been explored previ-
ously [6]. And of course, there are many specialized ways
to efficiently approximate these sliding-window type filter-
ing operations [7, 8], but we will only consider general and
exact techniques.

In Figure 1 we compare our pyramid filtering technique
against the three previously-described baselines. We see
that only our technique performs well in terms of speed and
memory overhead when n is large — which is crucial, as
n ≈ 256 in our experiments. The sliding window technique
has minimal memory overhead, but is intractably slow —

Figure 1. Profiles of different methods for densely evaluating a
linear classifier on a feature vector for every voxel in a volume
(where we have 50 channels for the volume, as is common in
our experiments). Here we show the speed (time taken to clas-
sify the entire volume) and memory overhead (memory required
to classify the volume, not including the feature channels of the
volume themselves) for different classification techniques and dif-
ferent size volumes. Only our pyramid filtering technique is both
fast and memory-efficient when n is large (n ≈ 256 in our exper-
iments). In fact, pyramid filtering is the only method which actu-
ally runs to completion when n is large – all other techniques run
out of memory or never finish, which is why ours plots appear in-
complete. Experiments were performed on a 2011 Macbook Pro.

often 200× as slow as ours. The FFT techniques are faster,
but still significantly slower than our technique by 5−20×,
and have prohibitively large memory footprints (6×without
caching, 160×with caching) which caused our experiments
to crash as n became large. Only our pyramid filtering tech-
nique can run efficiently (or, at all) on the volumetric data
we are investigating.

Now that we have demonstrated the efficiency of pyra-
mid filtering empirically, we will demonstrate it theoreti-
cally with regards to computational complexity. Consider a
d-dimensional signal of size n, so in our experiments d = 3
and the signal is of size (n × n × n). Let m be the width
of the filter (m = 3 in our case), and f is the number of
channels that the signal has been split into (f ≈ 50 or 100
in our case). We assume the height of the pyramid being
used is K, which is at most blog2(n)c. The computational

complexity of pyramid filtering is:

2d
(
1− 2−Kd

)
2d − 1

fmdnd +Knd (1)

In our case (d = 3, K = 6) this is approximately:

1.143fm3n3 + 6n3 (2)

Where the first term is the cost of convolving each level of
the pyramid by a set of filters, and the second term is the
cost of collapsing the pyramid (we omit the cost of con-
structing pyramids, as it is required by both our technique
and the sliding window technique). We see that the cost is
almost entirely dominated by that of convolving the largest
scale of the pyramid (which is just the volume) by a small
filter. Effectively, we process every other scale for free.

Now consider the computational complexity of the slid-
ing window method for classifying every voxel in the vol-
ume:

2dKfndmd (3)

where the 2dK multiplier comes from having to do linear
interpolation for each location on every level of the pyra-
mid. In our case (d = 3, K = 6) this cost is:

48fn3m3 (4)

The difference between our fast pyramid filtering technique
and the traditional sliding window technique (ignoring the
cost of collapsing a pyramid, which is negligible) is that our
1.143 multiplier has been replaced by 48. This tells us that
we should expect at least a speedup of about 42× relative to
the sliding window technique.

Of course, our analysis ignores the fact that our fast
technique is built upon convolutions with very small filters,
which are generally fast and well-optimized. This is why
we see a speedup of 200× in practice, as opposed to the
42× improvement our analysis predicts.

2. Feature Learning
One of the feature channels used in our model is a “adap-

tive” set of features based on raw pyramid-context features
of the input volume. To learn these features, we use the sim-
ple feature-learning technique of [4] to learn filters, which
is effectively whitening and k-means. First, we will extract
a set of pyramid-context features {xi} from our raw train-
ing volumes. To whiten, we compute the sample mean and
covariance matrix of {xi}:

µ =
1

|x|
∑
i

xi (5)

Σ =
1

|x|
∑
i

(xi − µ)(xi − µ)T (6)

The whitening matrix is:

W = V diag(1/
√
λ+ ε)V T (7)

Where V is a matrix of eigenvectors of Σ, λ is a vec-
tor of eigenvalues, and ε is a small constant to deal with
eigenvalues that are close to 0, (which we set to 0.01, and
which feature-learning is surprisingly sensitive to). With
this transformation we can whiten our data:

wi = W (xi − µ) (8)

We will then learn a dictionary from our whitened data, by
solving the following optimization problem.

minimize
d,c

∑
i

‖dci − wi‖22

subject to ‖dj‖22 = 1,∀j
‖ci‖0 ≤ 1, ∀i (9)

This is the “OMP-1” or “gain-shape vector quantization” al-
gorithm used in [4]. It closely resembles k-means, except
that similarly to cluster j is measured by the inner prod-
uct 〈wi, dj〉, instead of Euclidian distance ‖wi − dj‖22. If
each wi is unit length (which they are not, though whiten-
ing produces vectors that have similar magnitudes) then this
algorithm can be viewed as minimizing the angle between
each datapoint and its cluster. We solve Equation 9 using
a greedy k-means-like coordinate descent algorithm: Each
datapoint wi is assigned greedily to whichever dictionary
element dj best minimizes the residual reconstruction error
‖djci − wi‖22, which gives us ci, the “cluster assignment”
of datapoint wi. Once we have all ci, we update each dj to
be the data, weighted by the strength of each cluster assign-
ment: dj =

∑
i wici(j). We then renormalize each dj to be

unit-length, and repeat the procedure.
Once we have computed all dj , we invert the whitening

transformation to get unwhitened filters fj = Wdj . Be-
cause of the centering in whitening, we must also compute
a set of biases: bj = −µTWdj . With this, we can compute
our feature channels {F} as follows:

F (j) = max(0, (V ⊗ fj) + bj) (10)

Where ⊗ is our “pyramid-filtering” procedure, as described
in the paper. The max(0, ·) term is a “soft thresholding”
which serves to introduce a non-linearity, and which was
found to be the most effective encoding technique in [4].

References
[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. TPAMI, 2002.
[2] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and ob-

ject recognition using low distortion correspondences. CVPR,
2005.

[3] A. C. Berg and J. Malik. Geometric blur for template match-
ing. CVPR, 2001.

[4] A. Coates and A. Ng. The importance of encoding versus
training with sparse coding and vector quantization. ICML,
2011.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. ICCV, 2005.

[6] C. Dubout and F. Fleuret. Exact acceleration of linear object
detectors. ECCV, 2012.

[7] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cas-
cade object detection with deformable part models. CVPR,
2010.

[8] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. CVPR, 2001.

(a) Input Signal (b) Ground Truth (c) Our Prediction

Figure 2. In Figure 2(a) we have slices of a fluorescent volume of a late-stage Drosophila embreyo. In Figure 2(b) we have annotations of
8 biologically-relevant tissues from a biologist. Given the volume in Figure 2(a) we can produce a per-voxel prediction of each tissue from
a new (test-set) volume in a matter of minutes, as shown in 2(c).

(a) Input Signal (b) Ground Truth (c) Our Prediction

Figure 3. Another test-set volume, shown in the same fashion as Figure 2.

(a) Input Signal (b) Ground Truth (c) Our Prediction

Figure 4. Another test-set volume, shown in the same fashion as Figure 2.

(a) Input Signal (b) Ground Truth (c) Our Prediction

Figure 5. Another test-set volume, shown in the same fashion as Figure 2.

Input (Cropped) Ground-Truth HOGP [5] RP [1] RFP [2, 3] RFAP (RFAP)2 (RFAP)2 + post

Figure 6. Some visualizations of the output of our model, and other models, on a test-set volume. In the first column we have the input
volume (cropped near the tissue of interest), and in the second we have the ground-truth annotation of a tissue. The other columns are
the output of various models, the first being an improved HOG baseline, the last being our complete model, and the others being notable
ablations of our model (some of which resemble optimized and improved versions of other techniques). Here we show the 8 tissues for a
single test-set volume.

Input (Cropped) Ground-Truth HOGP [5] RP [1] RFP [2, 3] RFAP (RFAP)2 (RFAP)2 + post

Figure 7. This figure has the same structure as Figure 6, but for a different test-set volume.

Input (Cropped) Ground-Truth HOGP [5] RP [1] RFP [2, 3] RFAP (RFAP)2 (RFAP)2 + post

Figure 8. This figure has the same structure as Figure 6, but here we have just one tissue(tissue 1), and we show several test-set volumes
(one per row) for just that tissue. We see that the in-class variation of these tissues is substantial.

Input (Cropped) Ground-Truth HOGP [5] RP [1] RFP [2, 3] RFAP (RFAP)2 (RFAP)2 + post

Figure 9. This figure has the same structure as Figure 8, but for tissue 4.

Input (Cropped) Ground-Truth HOGP [5] RP [1] RFP [2, 3] RFAP (RFAP)2 (RFAP)2 + post

Figure 10. This figure has the same structure as Figure 8, but for tissue 5.

Input (Cropped) Ground-Truth HOGP [5] RP [1] RFP [2, 3] RFAP (RFAP)2 (RFAP)2 + post

Figure 11. This figure has the same structure as Figure 8, but for tissue 8.

Figure 12. Precision/recall curves for different models on our entire test set, with one plot for each specific tissue.

(a) Test Volume 1 (b) Test Volume 2 (c) Test Volume 3 (d) Test Volume 4 (e) Test Volume 5

Figure 13. Because of the difficulties in visualizing volumes, here we show slices of our volume, for one tissue (tissue 1), across 5 test-set
volumes. The left column is a slice of the input volume, the middle column is the ground-truth annotation, and the right column is our
prediction. This demonstrates the difficulty of the task that a biologists faces when viewing or annotating a volume — identifying which
pixels in a slice belong to a tissue is challenging, especially when looking at only a single cross-section of the volume (of course, our
model looks at the entire volume at once when labeling voxels). We see that our model does a very good job of predicting tissues, even at a
per-voxel degree of accuracy. We also see the significant intra-class variation for a given tissue — these slices are all drawn from the same
positions in our “canonically” aligned volumes, but the the same slice of the same tissue varies dramatically from volume to volume.

(a) Test Volume 1 (b) Test Volume 2 (c) Test Volume 3 (d) Test Volume 4 (e) Test Volume 5

Figure 14. This figure has the same structure as Figure 13, but for tissue 5.

(a) Test Volume 1 (b) Test Volume 2 (c) Test Volume 3 (d) Test Volume 4 (e) Test Volume 5

Figure 15. This figure has the same structure as Figure 13, but for tissue 8.

(a) Test Volume 1 (b) Test Volume 2 (c) Test Volume 3 (d) Test Volume 4 (e) Test Volume 5

Figure 16. This figure has the same structure as Figure 13, but for tissue 4.

(a) Test Volume 1 (b) Test Volume 2 (c) Test Volume 3 (d) Test Volume 4 (e) Test Volume 5

Figure 17. This figure has the same structure as Figure 13, but for tissue 6.

