

PERFORMANCE BASELINE COMPONENTS

PB	$=\mathrm{CBB}+\text { contingency }+ \text { non-contract costs }$	= performance baseline (TPC, total project cost)
contingency	$=$	= held by DOE \& based on technical and programmatic risks
CBB	$=\mathrm{PMB}+\mathrm{MR}$	= contract budget base
PMB	$=\mathrm{CAs}+\mathrm{UB}+$ SLPPs	= performance measurement baseline
MR	=	= management reserve (held by contractor based on contractor risks)
SLPP	=	= summary level planning package
AUW	=	= authorized unpriced work (contractually approved but not yet negotiated)
CA	$=\mathrm{WPs}+\mathrm{PPs}$	= control account (includes AUW, lowest WBS element assigned)
UB	$=$	= undistributed budget (activities not yet distributed to CA)
WP	=	= work package (near-term, detail-planned activities within a CA)
PP	=	= planning package (far-term activities within a CA)

EVMS BASIC COMPONENTS ${ }^{1}$

AC	$=$ actual cost	= ACWP	= actual cost of work performed
EV	$=$ earned value	= BCWP	= budgeted cost for work performed
PV	$=$ planned value	= BCWS	= budgeted cost for work scheduled
BAC	$=$ cumulative PV	$=$ cumulative BCWS	= budget at completion

VARIANCES ${ }^{1}$

CV	$=E V-A C$
SV	$=E V-P V$
CV $\%$	$=(E V-A C) / E V$
SV $\%$	$=(E V-P V) / P V$
VAC	$=$ BAC - EAC

$$
\begin{aligned}
=\text { BCWP }- \text { ACWP } & =\text { cost variance } \\
=\text { BCWP }- \text { BCWS } & =\text { schedule variance } \\
=(\text { BCWP }- \text { ACWP }) / \text { BCWP } & =\text { cost variance, percentage } \\
& =(\text { BCWP }- \text { BCWS }) \text { BCWS }
\end{aligned}
$$

OVERALL STATUS

\% scheduled	$=\mathrm{PV}_{\mathrm{cum}} / \mathrm{BAC}$	$=\mathrm{BCWS}_{\mathrm{cum}} / \mathrm{BAC}$	
$\%$ complete	$=\mathrm{EV}_{\mathrm{cum}} / \mathrm{BAC}$	$=\mathrm{BCWP}_{\mathrm{cum}} / \mathrm{BAC}$	
\% budget spent	$=\mathrm{AC}_{\mathrm{cum}} / \mathrm{BAC}$	$=\mathrm{ACWP}_{\mathrm{cum}} / \mathrm{BAC}$	
WR	$=\mathrm{BAC}-\mathrm{EV}_{\mathrm{cum}}$	$=\mathrm{BAC}-\mathrm{BCWP}_{\mathrm{cum}}$	= work remaining
BR	$=\mathrm{BAC}-\mathrm{AC}_{\mathrm{cum}}$	$=\mathrm{BAC}-\mathrm{ACWP}_{\mathrm{cum}}$	= budget remaining

PERFORMANCE INDICES ${ }^{1}$

CPI	$=\mathrm{EV} / \mathrm{AC}$	$=\mathrm{BCWP} / \mathrm{ACWP}$	
SPI	$=\mathrm{EV} / \mathrm{PV}$	$=\mathrm{BCWP} / \mathrm{BCWS}$	
$\mathrm{TCPI}_{\mathrm{BAC}}$	$=\mathrm{WR} / \mathrm{BR}$		$=$ schedule performance index
$\mathrm{TCPI}_{\mathrm{EAC}}$	$=\mathrm{WR} / \mathrm{ETC}$		
			to complete performance index
			to complete performance index, BAC

$\mathrm{TCPI}_{\mathrm{EAC}}=\mathrm{WR} / \mathrm{ETC}$
= to complete performance index, EAC

COMPLETION ESTIMATES

EAC	$=\mathrm{BAC} / \mathrm{CPI}_{\mathrm{cum}}$
$\mathrm{EAC}_{\mathrm{CPI}}$	$=\mathrm{AC}_{\mathrm{cum}}+\mathrm{WR} / \mathrm{CPI}_{\mathrm{cum}}$
$\mathrm{EAC}_{\mathrm{composite}}$	$=\mathrm{AC}_{\mathrm{cum}}+\mathrm{WR} /\left(\mathrm{CPI}_{\mathrm{cum}} * \mathrm{SPI}_{\mathrm{cum}}\right)$
LRE	$=$
ETC	$=\mathrm{EAC}-\mathrm{AC}_{\mathrm{cum}}$

= estimate at completion, general
= estimate at completion, CPI
= estimate at completion, composite
= latest revised estimate (contractor's, assessed monthly, annual bottoms-up)
= estimated to complete

[^0]
[^0]: ${ }^{1}$ Calculations based on AC, EV, and PV may be based on various time periods, i.e. monthly, cumulative (cum), last 3 months,...

