Establishing the Physics Basis for Sustaining a High β Burning Plasma in Steady-State

by R.J. Buttery

Presented at the FESAC 10 Year Program Planning Meeting

Gaithersberg

June 3rd 2014

Flexible current drive

Burning plasma projection

RJ Buttery/FESAC/June 2014

Our Vision of the 10-Year U.S. Program to Enable Success in ITER and the Start of an FNSF Design in the Early 2020's

Steady State Research is Critical to Fusion Energy Path, Requiring Continued AT and ST US Leadership

FNSF provides unique insights in path to fusion energy:

- Resolve Tritium breeding
- Develop nuclear-hard materials and components
- Extract high grade heat

- Steady state research required to:
 - Resolve design point for FNSF
 - Determine optimization for ITER and other long pulse facilities
 - Identify the path to DEMO
- DIII-D and NSTX-U provide world leading & complementary capabilities to resolve physics for fusion reactors

- Highly flexible, well diagnosed, reactor relevant solutions for > τ_{R}
- Low vs high torque and ρ_e
- Complementary current drive (ECCD, Helicon vs HHFW, helicity injection)
- Complementary boundary approach (cryopumping vs lithium)

DIII-D and NSTX-U provide physics basis for steady state regime, additional validation from long pulse facilities abroad

Steady-State Operation Requires Demonstration of a Self-Consistent Operating Scenario

Physics need	FNSF Objective	Motivation
High pressure limit	High neutron flux	Tritium breeding
Fully non-inductive current sustainment	High neutron fluence	Materials testing
Dominant self-driven current & efficient non-inductive current drive	Low recirculating power	Minimize stress on heat handling systems Minimize size and operating cost

- Self-consistent scenarios must meet these objectives simultaneously
- Both scenario demonstration and physics understanding are required for FNSF design start with high confidence

This talk will focus on AT side, anticipating similar talk on ST side

A Steady-State Burning Plasma Requires Both High Plasma Pressure and Self-Driven Plasma Current

Tokamak steady state exploits a synergy between off-axis heating and current drive, and high β operation

Transport, Current Drive & Stability are Tightly Coupled in Steady State Scenarios

Test and optimize with a compatible boundary solution -

Existing tokamaks can resolve these physics issues

Heating and Current Drive Flexibility Required to Develop the Basis for High β Steady-State Operation

- Challenge: Maintain non-inductive regimes at high pressure
 - Solutions optimize with increasing pressure (β_N)
- DIII-D off axis NBI & ECCD provide the tools needed to explore the solution

Regime	Strength	Challenge
High q _{min}	β _N =5 potential. No disruptions	Fast ion transport
Hybrid	High confinement. Efficient CD	βlimit
High ℓ_i	High confinement and $\beta_{\text{N}}\text{=}5$	Sustainment. n=0. Tearing modes

Directions needed:

- Higher β & $J_{off-axis}$ for neutron flux and $I_{self-driven}$
- Increased electron heating and lower torque

→ Enable decision on FNSF & physics basis for DEMO

H&CD Upgrades Will Enable Detailed Assessment of FNSF Scenarios and Exploration of Attractive DEMO Solutions Increased off axis current drive and electron heating ECCD - 2nd off axis beam & energy rise, 10MW ECCD, Helicon (10.5 MW)Increased total, "co-" & balanced torque heating Toroidally rotatable beams (+EC+Helicon) Helicon (1-4 MW) βN ~ 4.8 Projected β<mark>N</mark> ~ 3.5 0.6 Helicon ~ 50% Total Current DEMO Target Off-axis Current Drive (MA) EC Upgrade 0.4 2nd Off-Axis **NBI (14 MW)** Target (DIII-D) **Proposed NBI** Toroidally Steerable Beam ~ 25% Total Current **Steerable NBI** (Proposed) 0.2 +ECCD Counter NB Toroidally Steerable Beam Present NBI (Proposed) 0 15 25 5 10 30 20 35 0 150 Beam 1st Off-axis Total Power (MW) Beam (Present) 2nd Off-axis Beam (Planned)

RJ Buttery/FESAC/June 2014

Higher Power NBI & ECH, and a 2nd Off-Axis Beamline Enable Access To Steady State Fusion Energy Conditions

• Integrated modeling (transport, stability, CD) used to assess path to fully non-inductive β_N =5 with q_{min} >2 in DIII-D

	On-Axis Power (MW)	Off-Axis Power (MW)	ECH Power (MW)	β _N Transport Limit	β _N Stability Limit	
Present NBI@80kV + EC upgrade	10	5	9	4.0	4.5	
Above + NBI@100 kV	14	7	9	5.2	4.4	
Two OANB at 100 kV	7	14	9	5.1	4.9	

- ECCD tuned to achieve q_{min} =2+ ϵ

- Pulse length extension to enable converged solutions for 2 current redistribution timescales
 - $\tau_R \alpha \beta_N^{3/2}$ \Rightarrow increase pulse length x2 to 7s

Enables DIII-D to explore reactor optimization

146821

Increased Electron Heating Will Enable Projection of Steady State Scenarios to Burning Plasma Conditions

- Transport altered with low torque e⁻ heating
- Increased ECH & E_{NBI} will heat like fusion α 's
 - Low torque, fuelling, \mathbf{v}^* & fast ion content

Enables model validation and optimization as T_e/T_i, \nabla T_e, \nabla T_i, & ExB shear varied over burning plasma relevant range

Initiative on Development of a Steady State Physics Basis is Critical to U.S. Path to Fusion Energy & an FNSF Decision

Delivering the basis for high β burning plasma steady-state will:

- Provide exciting research opportunities at the frontier of fusion energy sciences
- Enable the US to extend its world leadership role in this key area and expand its influence worldwide through strategic partnerships with international facilities
- Develop validated fully non-inductive solution & projection to FNSF, and provide the basis for steady-state in ITER & DEMO

This physics basis can be readily established with exploitation and reasonable development of the DIII-D and NSTX-U facilities

This Initiative is an Essential Element of the 10-Year U.S. Program

