
### Addressing PMI Science and PFC technology for ITER, FNSF and DEMO

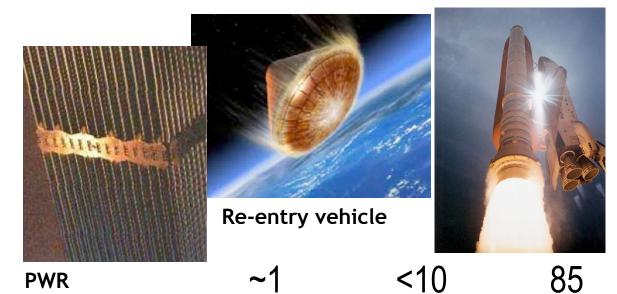
Juergen Rapp



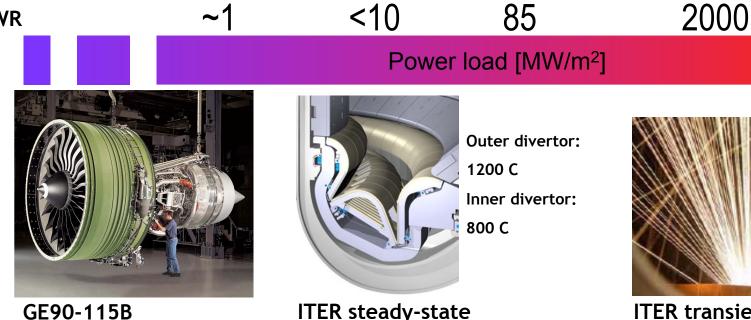


# Lifetime of divertor will determine availability of reactor




#### Main driver of scheduled maintenance: divertor (and blanket)

2 Managed by UT-Battelle for the U.S. Department of Energy


Juergen Rapp, Presentation to FESAC, July 31st 2012

CAK RIDGE

### **Challenge: thermal loads**



#### Space Shuttle rocket nozzle

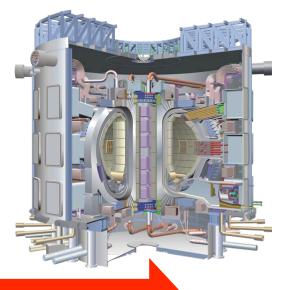


**ITER steady-state** 



**ITER transients** (1ms lifetime)

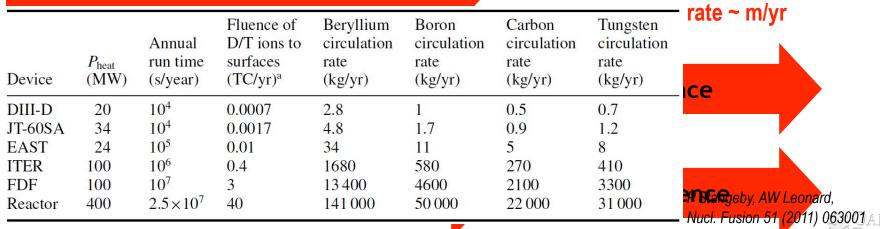



## **Challenges for PFCs: fluxes and fluence**

JET

ITER

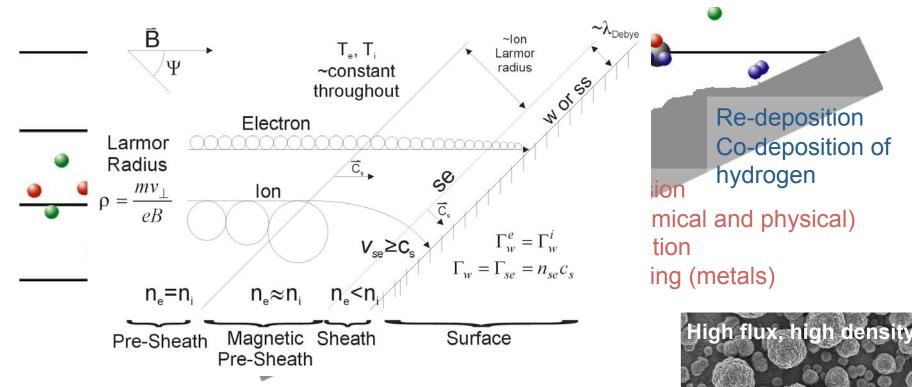
**Fusion Reactor** 








#### Maderial eirowigher due tagxess erosion, rough estimations


## Worst case erosion



4 Managed by UT-Battelle for the U.S. Department of Energ

Juergen Rapp, Presentation to FESAC, July 31st 2012

## **Plasma Surface Interactions**



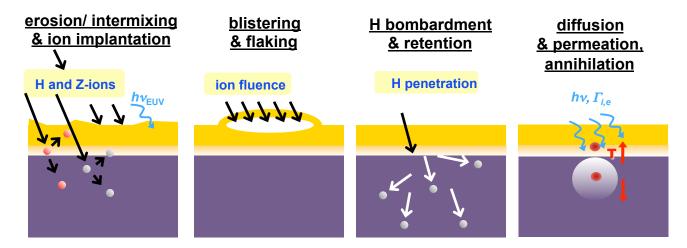
#### **Strongly Coupled PSI regime:**

- 1) Eroded material is trapped in plasma (highly collisional)
- 2) High fluence  $\Rightarrow$  thick layers of re-deposited material

Every surface atom is displaced ~  $10^7$  times in a divertor lifetime

#### Material in a reactor divertor is NOT what was installed, we need a way to create and test plasma-reformed surfaces

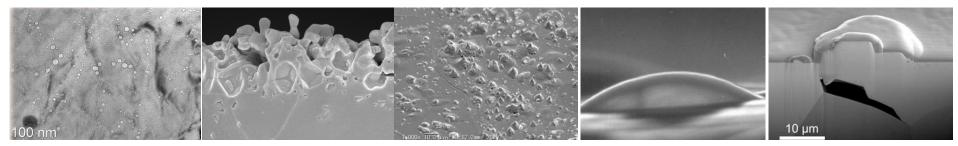



5 Managed by UT-Battelle for the U.S. Department of Energy

## **Plasma Surface Interactions**

Complex systems with many species and layers

H, D ions plus low-Z and high-Z ions:


He, C, (Be), W, N, Ne, Ar



Extreme conditions change materials considerably

#### Irradiation by neutrons and helium will enhance surface modification !

Note: At the end of the PFC lifetime the surface has moved through the bulk material



Void formation, 9 dpa

Bubbles in W by He Blis

Blisters within grains

Large Blisters due to voids at grain boundary

National Laboratory

6 Managed by UT-Battelle for the U.S. Department of Energy

Juergen Rapp, Presentation to FESAC, July 31st 2012

# Value of linear plasma devices, when compared to toroidal devices

- Good diagnostic access
- Diagnostics are readily exchanged (maintenance, upgrades)
- Surface diagnosis possible without breaking vacuum
- High flux (10<sup>24</sup> m<sup>-2</sup>s<sup>-1</sup>), high fluence discharges possible (accelerated lifetime tests), like that of ITER, FNSF, DEMO
- Well controlled continuous plasma conditions vs. tokamaks enduring different conditions in short durations

Inter-ELM, ELM, L-mode phase, ramp-up, ramp-down in different operation scenarios for many campaigns, venting.....

- Research objectives of tokamaks and stellarators rely on success of PSI, yet only a fraction of the time is allocated to active PSI research
- Damage and lifetime studies of PFCs in tokamaks, stellarators are mostly not allowed or discouraged due to excessive risks and expenses (change of wall components; shutdown times) and issues of reactor relevance
- Device and operation costs of linear plasma generators are small fractions than that of tokamaks and stellarators

#### Linear plasma devices can complement power exhaust science carried out on toroidal devices in a synergistic way.

Managed by UT-Battelle for the U.S. Department of Energy

7

## **Need for Upgraded or New Linear Plasma Facility**

- Upgraded capabilities should include but are not limited to:
  - Access to high density low temperature reactor divertor plasma conditions ( $n_e > 10^{21} \text{ m}^{-3}$ ,  $T_e \sim 1 \text{ eV}$ )
  - Parallel power fluxes of up 40 MW/m<sup>2</sup>
  - Ion fluxes of more than 10<sup>24</sup> m<sup>-2</sup>s<sup>-1</sup>
  - Steady-state conditions for the above mentioned parameters (-> high fluence)
  - Capability to expose irradiated and toxic material samples
  - Ability to control electron and ion temperature separately
- Requirement: high density plasma source with sufficient power based on RFtechnology
- Anticipated costs for such an Upgrade or New device are < \$15M.



## **DOE acknowledges importance of Plasma** Material Interaction (PMI) in fusion

DOE ReNeW (Research Needs Workshop) identified

# First wall materials and compatibility with fusion reactor relevant plasmas (theme 3)

to be addressed for rapid and efficient realization of fusion energy i.e. Thrust 10:

# Decode and advance the science and technology of plasma-surface interactions

DOE FESAC panel (Fusion Energy Science Advisory Comm.) recently identified the need of an

# Upgrade and/or New Build of linear plasma test stands with medium scale facilities

| Requirement                                                                   | Thrusts                  |
|-------------------------------------------------------------------------------|--------------------------|
| Diagnostic investment for edge characterization                               | 1 and 9                  |
| Dedicated experimental time for edge characterization                         | 1, 5, 9, <mark>10</mark> |
| Improved models and code components for edge region                           | 9 and <b>10</b>          |
| Innovative divertor concepts and testing                                      | 9 and 11                 |
| Transient impact on plasma facing components                                  | 2, 6 and <b>10</b>       |
| Innovative design of solid surface PFCs                                       | <b>10</b> and 11         |
| Testing necessary to validate codes, improved physics models, and new designs | <b>10</b> and 11         |
| Liquid surface development                                                    | 11                       |
| Improved diagnostic parts in edge                                             | 1, 2, 9, <b>10</b> , 11  |
| Antenna and launcher development                                              | 10                       |
| Internal coils                                                                | 2 and 5                  |
| Integrated demonstration of taming plasma material interactions               | 12                       |
|                                                                               | RIDGE                    |