Diversified International Portfolio for Magnetic Fusion

and **FIRE**

Dale M. Meade for the FIRE Study Team

Overview 2002 Fusion Summer Study Snowmass, CO

July 8, 2002

http://fire.pppl.gov

Outline

- Fusion Goals
- Critical Issues for Fusion
- Strategy for a Road Map
- FIRE
 - Goals
 - Characteristics
 - Issues/Challenges
- Plans for the Future

The Key Features for an Attractive Fusion Power Plant have been Identified

Desired Characteristics

- Power gain Q \geq 25 $n\tau_E T_i > 6 \ x \ 10^{21} \ m^{-3} \ s \ keV$
- Power density ≥ 6 MWm⁻³ high beta = p_{plasma}/p_{mag} > 5%
- Wall Loading > 3 MW m⁻²
- Steady state bootstrap current > 90%
- High availability First Wall Materials > 150 dpa
- Safety and Environment low activation materials no evacuation

Cross Section of ARIES-AT Power Core Configuration

Pfusion = 1.7GW, Pe = 1 GW

Critical Issues to be Addressed in the Next Stage of Fusion Research

Advanced Toroidal Physics

- develop and test physics needed for an attractive MFE reactor
- couple with burning plasma physics
- Boundary Physics and Plasma Technology (coupled with above)
 - high particle and heat flux
 - couple core and divertor
 - fusion plasma tritium inventory and helium pumping
- Burning Plasma Physics (coupled with above)
 - strong nonlinear coupling inherent in a fusion dominated plasma
 - access, explore and understand fusion dominated plasmas
- Neutron-Resistant Low-Activation Materials
 - high fluence material testing facility using "point" neutron source

- high fluence component testing facility using volume neutron source

 Superconducting Coil Technology does not have to be coupled to physics experiments - only if needed for physics objectives

Innovation First or Large-Scale Technology Integration First ??

Integration of Large-Scale Fusion Energy Technolgy

Diversified International Portfolio for Magnetic Fusion

A "Lower Cost More Efficient Path" to Fusion Energy

Magnetic Fusion is Technically Ready for a High Gain Burning Exp't

We are ready but this step is our most challenging physics step yet.

Burning Plasma Physics - The Next Frontier

FIRE

US Based Diversified International Portfolio

1,400 Tonne

ITER-FEAT

JA, EU or CA Based International Partnership

19,000 Tonne

IGNITOR

Italian Based International Collaboration

500 Tonne

Organization

• National activity managed by the Virtual Laboratory for Technology with participation by more than 15 institutions.

Purpose:

- to investigate and assess various opportunities for advancing the scientific understanding of fusion energy, with emphasis on plasma behavior at high energy gain and for long duration.
- tasks to be pursued include investigation of a modular program pathway, with initial emphasis on the burning plasma module (e.g., FIRE).

Advisory Committee

- Members: Tony Taylor (Chair), Gerald Navratil, Ray Fonck, David Gates, Dave Hill, Wayne Houlberg, Tom Jarboe, Mitsuro Kikuchi, Earl Marmar, Raffi Nazikian, Craig Petty, Rene Raffray, Paul Thomas, James VanDam
- Extensive PAC Reports provide detailed recommendations for the FIRE activity to address. NSO-PAC reports are on FIRE (http://fire.pppl.gov).

Participants in the FIRE Engineering Design Study

FIRE is a design study for a major Next Step Option in magnetic fusion and is carried out through the Virtual Laboratory for Technology. FIRE has benefited from the prior design and R&D activities on BPX, TPX and ITER.

Advanced Energy Systems **Argonne National Laboratory DAD** Associates **General Atomics Technology** Georgia Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory Massachusetts Institute of Technology **Oak Ridge National Laboratory Princeton Plasma Physics Laboratory** Sandia National Laboratory Stone and Webster The Boeing Company **University of Illinois** University of Wisconsin

Fusion Science Objectives for a Major Next Step Burning Plasma Experiment

Explore and understand the strong non-linear coupling that is fundamental to fusion-dominated plasma behavior (self-organization)

- Energy and particle transport (extend confinement predictability)
- Macroscopic stability (-limit, wall stabilization, NTMs)
- Wave-particle interactions (fast alpha particle driven effects)
- Plasma boundary (density limit, power and particle flow)
- Test/Develop techniques to control and optimize fusion-dominated plasmas.
- Sustain fusion-dominated plasmas high-power-density exhaust of plasma particles and energy, alpha ash exhaust, study effects of profile evolution due to alpha heating on macro stability, transport barriers and energetic particle modes.
- Explore and understand various advanced operating modes and configurations in fusion-dominated plasmas to provide generic knowledge for fusion and non-fusion plasma science, and to provide a foundation for attractive fusion applications.

Advanced Burning Plasma Exp't Requirements

Burning Plasma Physics

Q	\geq 5, ~ 10 as target, ignition not precluded
$f_{\alpha} = P_{\alpha}/P_{heat}$	\geq 50%, ~ 66% as target, up to 83% at Q = 25
TAE/EPM	stable at nominal point, able to access unstable

Advanced Toroidal Physics

$$\begin{split} f_{bs} &= I_{bs}/I_p & \geq 50\% & \text{up to } 75\% \\ \beta_N & \sim 2.5, \, \text{no wall} & \sim 3.6, \, n \, = 1 \text{ wall stabilized} \end{split}$$

Quasi-stationary Burn Duration

FIRE has Adopted the Advanced Tokamak Features Identified by ARIES Studies

- High toroidal field
- Double null
- Strong shaping
 - κ = 2.0, δ = 0.7
- Internal vertical position control coils
- Cu wall stabilizers for vertical and kink instabilities
- Very low ripple (0.3%)
- ICRF/FW on-axis CD

- LH off-axis CD
- LHCD stabilization of NTMs
- Tungsten divertor targets
- Feedback coil stabilization for Resistive Wall Modes (RWM)
- Burn times exceeding current diffusion times
- Pumped divertor/pellet fueling/impurity control to optimize plasma edge

Optimization of a Burning Plasma Experiment

• Consider an inductively driven tokamak with copper alloy TF and PF coils precooled to LN temperature that warm up adiabatically during the pulse.

• Seek minimum R while varying A and space allocation for TF/PF coils for a specified plasma performance - Q and pulse length with physics and eng. limits.

What is the optimum for advanced steady-state modes?

Fusion Ignition Research Experiment

(FIRE)

http://fire.pppl.gov

Design Features

- R = 2.14 m, a = 0.595 m
- B = 10 T
- W_{mag}= 5.2 GJ
- I_p = 7.7 MA
- $P_{aux} \leq 20 \text{ MW}$
- $Q \approx 10$, $P_{\text{fusion}} \sim 150 \text{ MW}$
- Burn Time \approx 20 s (2 tau_cr)
- Tokamak Cost ~ \$351M (FY02)
- Total Project Cost ≈ \$1.2B(FY02) at Green Field site.

Mission: Attain, explore, understand and optimize magnetically-confined fusion-dominated plasmas.

CIT + TPX = FIRE leading to ARIES

Basic Parameters and Features of FIRE

R, major radius	2.14 m
a, minor radius	0.595 m
кх, к95	2.0, 1.77
δx, δ95	0.7, 0.55(AT) - 0.4(OH)
q95, safety factor at 95% flux surface	>3
Bt, toroidal magnetic field	10 T with 16 coils, 0.3% ripple @ Outer MP
Toroidal magnet energy	5.8 GJ
Ip, plasma current	7.7 MA
Magnetic field flat top, burn time	28 s at 10 T in dd, 20s @ Pdt ~ 150 MW)
Pulse repetition time	~3hr @ full field and full pulse length
ICRF heating power, maximum	20 MW, 100MHz for $2\Omega T$, 4 mid-plane ports
Neutral beam heating	Upgrade for edge rotation, CD - 120 keV PNBI?
Lower Hybrid Current Drive	Upgrade for AT-CD phase, ~20 MW, 5.6 GHz
Plasma fueling	Pellet injection (≥ 2.5 km/s vertical launch inside
	mag axis, guided slower speed pellets)
First wall materials	Be tiles, no carbon
First wall cooling	Conduction cooled to water cooled Cu plates
Divertor configuration	Double null, fixed X point, detached mode
Divertor plate	W rods on Cu backing plate (ITER R&D)
Divertor plate cooling	Inner plate-conduction, outer plate/baffle- water
Fusion Power/ Fusion Power Density	150 - 200 MW, ~6 -8 MW m-3 in plasma
Neutron wall loading	~ 2.3 MW m-2
Lifetime Fusion Production	5 TJ (BPX had 6.5 TJ)
Total pulses at full field/power	3,000 (same as BPX), 30,000 at 2/3 Bt and Ip
Tritium site inventory	Goal < 30 g, Category 3, Low Hazard Nuclear Facility

Plasma Heating and Current Drive Systems

Note: Edge Barriers optimize at ~ 10T, while AT optimizes at ~ 6.6T

ICRF Heating: 20 MW, 80 – 120 MHz

	Н	He 4	D	D-T
5 T		•H _{min} @ 80 MHz	• H _{min} @ 80 MHz	• H _{min} @ 80 MHz
51	Direct Electron @120 MHz	Direct Electron @120 MHz	Direct Electron @ 120 MHz	Direct Electron @ 120 MHz
		• H _{min} @ 100 MHz	• H _{min} @ 100 MHz	• H _{min} @ 100 MHz
6.6T	Direct Electron @120 MHz	Direct Electron @120MHz	Direct Electron @120 MHz	 2ΩD @100 MHz Direct Electron @120 MHz
10 T	• He ³ _{min} @100 MHz			
101	Direct Electron @120 MHz	Direct Electron @120 MHz	• Direct Electron @120 MHz	 2Ω1 @100 MHz Direct Electron @120 MHz

Upgrades under Consideration

Lower Hybrid Current Drive: 20 - 30 MW, 4.6 - 5.6 GHz, n = 1.8- 2.2 Electron Cyclotron Current Drive 170 GHz @ r/a \approx 0.33 for Adv Tok at 6.6T.

FIRE Incorporates Advanced Tokamak Features (ala ARIES)

Direct and Guided Inside Pellet Injection

*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

FIRE Cross/Persp- 5/25//DOE

TF coils are being Designed with Added Margin.

- FIRE* Baseline R = 2.14 m, a = 0.595 m B = 10 T, Ip = 7.7 MA, 20 s flat top, Pfus = 150 MW
- Wedged TF/compression ring BeCu (C17510) inner leg
- The peak conductor VM Stress of 529 MPa for 10 T (7.7 MA) is within the static allowable stress of 724 MPa

(Allowable/Calculated = 1.3)

TF Coil Von Mises Stress Contours at 12 T

TF Conductor Material for FIRE is "Essentially" Available

- BeCu alloy C 17510 68% IACS is now a commercial product for Brush Wellman.
- A relatively small R&D program is needed to assure that the plates will be available in the properties and sizes required.

The plate on the right was manufactured for BPX

Edge Physics and PFC Technology: Critical Issue for Fusion

Plasma Power and particle Handling under relevant conditions Normal Operation / Off Normal events

Tritium Inventory Control must maintain low T inventory in the vessel \Rightarrow all metal PFCs

Efficient particle Fueling pellet injection needed for deep and tritium efficient fueling

Helium Ash Removal need close coupled He pumping

Non-linear Coupling with Core plasma Performance nearly every advancement in confinement can be traced to the edge Edge Pedestal models first introduced in ~ 1992 first step in understanding Core plasma (low n_{edge}) and divertor (high n_{edge}) requirements conflict

Solutions to these issues would be a major output from a next step experiment.

Tritium Considerations for FIRE and BP Experiments

- The tritium injected per shot in FIRE would be same as TFTR ≈ 0.2 g
- Retention fractions as high as JET and TFTR (~15%) would adversely impact operations.
- Tritium retention < 0.2% was measured (Wampler, Sandia) in the all metal system of C- Mod after DD operation.
 - Carbon divertor targets are ruled out for FIRE, and W was chosen as a reactor relevant solution.
- The Site Inventory Requirement for FIRE would be similar to TFTR (5g-T) which was Classified as DOE Category III, Low Hazard Facility (< 30g-T).

Site Limit of < 30g-T presently proposed with

 \leq 10 g-T in a single system

• Annual burn up of ~ few g-T, only small shipments of fuel and waste required.

FIRE's Divertor can Handle Attached (<25 MW/m2)and Detached(5 MW/m2) Operation

Reference Design is semi-detached operation with <15 MW / m2.

Divertor Module Components for FIRE

Sandia

Finger Plate for Outer Divertor Module

Two W Brush Armor Configurations Tested at 25 MW/m²

Carbon targets used in most experiments today are not compatible with tritium inventory requirements of fusion reactors.

FIRE In-Vessel Remote Handling System

In-vessel transporter

- Articulated boom deployed from sealed cask
- Complete in-vessel coverage from 4 midplane ports
- Fitted with different end-effector depending on component to be handled
- First wall module end-effector shown

Divertor end-effector

- High capacity (module wt. ~ 800 kg)
- Four positioning degrees of freedom
- Positioning accuracy of millimeters required

FIRE Plasma Regimes

Edge Barrier (H-Mode)

Fusion dominated:	$f_{\alpha} > 50\%$,	\approx 67%(target),	alpha	heating tests,	TAEs
-------------------	-----------------------	------------------------	-------	----------------	------

Heating	ICRF	20 MW, 80 – 120 MHz, baseline
NTM	LHD	20- 30 MW, 4.6 - 5.6 GHz, upgrade

Internal Transport Barrier and Advanced Tokamak (RS, RF-ITBs)

Toward ARIES: high beta $\beta_N \approx 5$, high bootstrap $f_{bs} \approx 90\%$, $f_{\alpha} > 80\%$

- Double Barrier (Off Axis ICRF)
- Inductive Optimized Shear (NCS, RS,...)
- Non-Inductive Optimized Shear ($\beta_N \sim 4$, $f_{bs} \sim 80\%$ and f_{α} >50%)

Heating	ICRF
Current Drive	LHCD
NTM	ECCD (170 GHz, resonant @ $r/a \approx 0.3$ for B = 6.6T)
RWM	Feedback Stabilization Coils in FW (~ 10 port plugs)

Physics Basis for FIRE is Similar to ITER's

Confinement (Elmy H-mode) - ITER98(y,2) based on today's data base

$$\tau_{\rm E} = 0.144 \ {\rm I}^{0.93} \ {\rm R}^{1.39} {\rm a}^{0.58} \ {\rm n}_{20}^{0.41} {\rm B}^{0.15} {\rm A}_{\rm i}^{0.19} {\rm \kappa}^{0.78} \ {\rm P}_{\rm heat}^{-0.69} \ {\rm H(y,2)}$$

Density Limit - Based on today's tokamak data base

 $n_{20} \le 0.8 n_{GW} = 0.8 l_p / \pi a^2$,

Beta Limit - theory and tokamak data base

 $\beta \leq \beta_{N}(I_{p}/aB), \quad \beta_{N} < 2.5 \text{ conventional}, \beta_{N} \sim 4 \text{ advanced}$

H-Mode Power Threshold - Based on today's tokamak data base

Pth \geq (2.84/Ai) $n_{20}^{0.58} B^{0.82} Ra^{0.81}$, same as ITER-FEAT

Helium Ash Confinement $\tau_{He} = 5 \tau_{E}$, Impurities = 3% -1.5%Be, 0% W

But FIRE has high triangularity and double null - both favorable for confinement and attaining small ELMs

FIRE is a Modest Extrapolation in Plasma Confinement

FIRE's Operating Density and Triangularity are Near the Optimum for the Elmy H-Mode

- The optimum density for the H-Mode is $n/n_{GW} \approx 0.6 0.7$
- H-mode confinement increases with δ
 - $\delta \approx 0.7$ FIRE
 - $\delta \approx 0.5$ ITER-FEAT
- Elm size is reduced for $\delta > 0.5$
- Z_{eff} decreases with density (Mathews/ITER scaling)
- DN versus SN ? C- Mod Exp'ts

Cordey et al, H = function (δ , n/n_{GW}, n(0)/<n>) EPS 2001

Simulation of Burning Plasma in FIRE

• ITER98(y, 2) with H(y, 2) = 1.1, n(0)/ $\langle n \rangle$ = 1.2, and n/ n_{GW} = 0.67

• Burn Time $\approx 20 \text{ s} \approx 21 \tau_E \approx 4 \tau_{He} \approx 2 \tau_{CR}$

Q = Pfusion/(Paux + Poh)

Helium Ash Removal Techniques Required for a Reactor can be Studied on FIRE

Fusion power can not be sustained without helium ash punping.

TSC/Kessel/21-q.ps

Energetic Particle Drive can be Varied in FIRE Using Divertor Pumping and Pellet Injection

Pumping Divertor TAE Driving Term 0.12 **ITER-FEAT** 0.10 **FIRE*** 0.08 $R\nabla \beta_{\alpha}$ 0.06 0.04 0.02 Imping vertor 0.00 0.5 0.9 0.6 0.7 0.8 1 Pellet Injection n / n_{GW}

ITER-FEAT: Q = 10 H = 0.95, FIRE*: Q = 10, H = 1.03,

Exploration of TAE Mode Stability in FIRE

John Mandrekas, 07/02/02

FIRE would Test a Sequence of AT Modes

Advanced Burning Plasma Physics could be Explored in FIRE

Tokamak simulation code results for H(y, 2) = 1.4, β_N = 3.5, would require RW mode stabilization. q(0) = 2.9, q_{min} = 2.2 @ r/a = 0.8, 8.5 T, 5.5 MA

Burning Plasma Simulation Initiative

• A more comprehensive simulation capability is needed to address the strong non-linear coupling inherent in a burning plasma.

- A comprehensive simulation could help:
 - better understand and communicate the important BP issues,
 - refine the design and expectations for BP experiments,
 - understand the experimental results and provide a tool for better utilization of the experimental run time, and
 - Carry the knowledge forward to the following tokamak step or to burning plasmas in other configurations.
- This is something we should be doing in any to support any of the future possibilities

FIRE Experimental Plan

Transport

Effects of high δ , double null on confinement– exp't, theory, modeling

ITBs w/o external momentum - Off Axis ICRF (C-Mod), Shafranov shift

Power Handling (and indirectly Tritium Retention)

Effects of high δ , double null on ELMs (JET, AUG, DIII-D, JT-60U)

Effect of neutral stability point and disruption behavior/mitigation (C-Mod)

AT Mode Development (B \approx 6.6 T, > 1 τ_{CR} duration)

Optimize Lower Hybrid Current drive

Improve Power Handling – a generic problem

ECCD (170 GHz) for NTM control

When could we start counting on AT-like performance in designing a BP?

Cost Estimate of FIRE Preconceptual Design (FY 2002\$)

Greenfield Site Cost Estimate	Estimated Cost		Conting'y	Total with Conting'y
1 - Fusion Core Systems		\$279,524	\$71,279	\$350,803
1.1 Plasma Facing Components	\$66,977			
1.2 Vacuum Vessel & In-Vessel Structures	\$42,354			
1.3 Toroidal Field Magnets and Structures	\$123,121			
1.4 Poloidal Field Magnets and Structures	\$35,732			
1.5 Cryostat	\$1,919			
1.6 Tokamak Support Structure	\$9,420			
2 - Auxiliary Systems		\$89,789	\$22,896	\$112,685
2.1 Gas & Pellet Injection Fueling Systems	\$4,769			
2.2 Vacuum Pumping System	\$12,645			
2.3 Fuel Recovery and Processing Systems	\$4,089			
2.4 RF Heating/Current Drive Systems	\$68,286			
3 - Diagnostic Systems		\$21,455	\$5,471	\$26,926
4 - Power Systems		\$153,504	\$39,144	\$192,648
5 - Central Instrumentation & Controls		\$18,337	\$4,676	\$23,013
6 - Site and Facilities		\$143,882	\$36,690	\$180,572
7 - Machine Assembly & Remote Maintenau	nce	\$80,375	\$20,496	\$100,871
8 - Project Support & Oversight		\$118,378	\$30,186	\$148,564
9 - Preparations for Operations		\$40,351	\$10,290	\$50,641
10 - R&D During Construction		\$19,328	\$4,929	\$24,256
Cost Estimate of Preconceptual Design (F)	r 2002\$)	\$945,595	\$241,127	\$1,186,721
TPC w/o co	ntingency	\$946M		

TPC with contingency \$1,200M

U.S. Participation in a Domestic Based Burning Plasma Experiment

★ Potential sites for U.S. Based Burning Plasma Experiment

Univ. of Alaska

U.S. Burning Plasma Design Activity - FIRE

Preconceptual Design	Response to Snowmass	Plan	Conceptua	l Design	Prelim. Design
	Plan	Conce	ptual Design	Prelin	n. Design
	New In	itiative	e in FY 2003?	*************	

Burning_Plasa_sched

- Listen and respond to critiques and suggestions for improvements.
- Update design goals and physics basis, review with Community, NSO PAC and DOE.
- Produce a Physics Description Document, and carry out a Physics Validation Review
- Initiate Project Activities (in 2003)

Form National Project Structure

Begin Conceptual Design

Initiate R&D Activities

Begin Site Evaluations

- A Window of Opportunity may be opening for U.S. Energy R&D. We should be ready. The Diversified International Portfolio has advantages for addressing the science and technology issues of fusion.
- FIRE with a construction cost ~ \$1B, has the potential to :
 - address the important burning plasma issues, performance ~ ITER
 - investigate the strong non-linear coupling between BP and AT,
 - stimulate the development of reactor relevant PFC technology, and
 - provide generic BP science and possibly BP infrastructure for non-tokamak BP experiments in the U. S.
- Some areas that need additional work to realize this potential include:
 - Apply recent enhanced confinement and advanced modes to FIRE
 - Understand conditions for enhanced confinement regimes-triangularity
 - Compare DN relative to SN confinement, stability, divertor, etc
 - Complete disruption analysis, develop better disruption control/mitigation.
- If a postive decision is made in this year, FIRE is ready to begin Conceptual Design in FY2003 with target of first plasmas ~ 2010.

http://fire.pppl.gov

The U.S. Builds ~1\$B Facilities to Explore, Explain and Expand the Frontiers of Science

SNS

CHANDRA

HST (NGST)

NIF

VLBA

