

Snowflake divertor – a possible power exhaust solution for magnetic fusion

V. A. Soukhanovskii

Lawrence Livermore National Laboratory, Livermore, California, USA

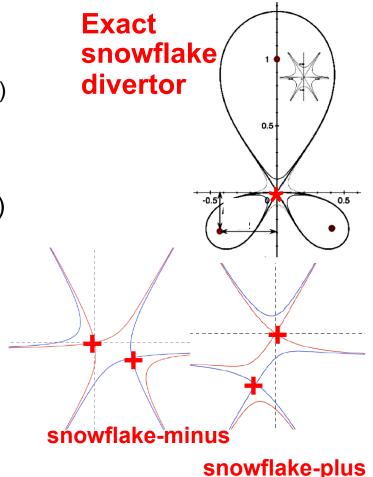
NSTX-U and DIII-D Research Teams

FUSION POWER ASSOCIATES 33rd Annual Meeting and Symposium Fusion Energy: Progress and Promise December 5-6, 2012 Washington, DC 20003

Acknowledgements

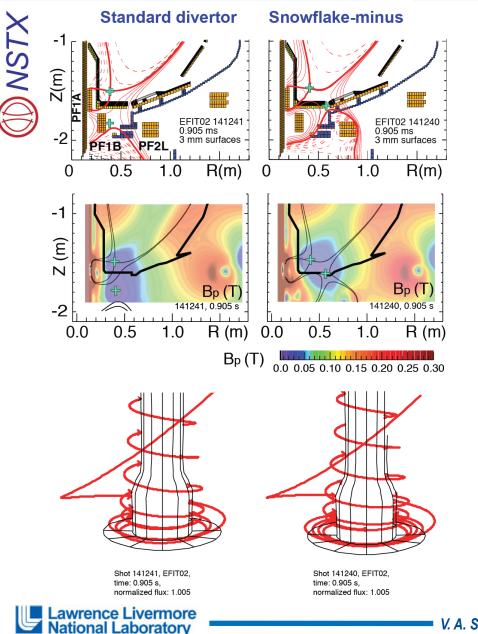
- LLNL Theory: D. D. Ryutov, T. D. Rognlien, M. V. Umansky
- NSTX-U Team: D. Battaglia, R. E. Bell, A. Diallo, S. P. Gerhardt, R. Kaita, S. M. Kaye, E. Kolemen, B. P. LeBlanc, R. Maingi, McLean, E. Meier, J. E. Menard, D. Mueller, S. F. Paul, M. Podesta, R. Raman, A. L. Roquemore, F. Scotti
- DIII-D Team: S. L. Allen, J. Boedo, N. Brooks, M. Fenstermacher, R. Groebner, D. N. Hill, A. Hyatt, C. Lasnier, A. Leonard, M. Makowski, A. McLean, T. Osborne, T. Petrie, J. Watkins
- DOE OFES: This work supported in part under Contract DE-AC52-07NA27344

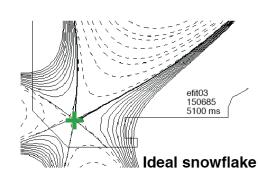
Poloidal divertor concept enabled progress in tokamak physics studies in the last 30 years

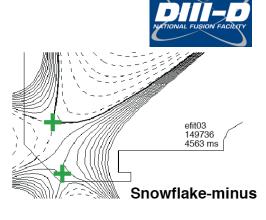

- Divertor challenge
 - Steady-state heat flux
 - − present limit $q_{peak} \le 10 \text{ MW/m}^2$
 - − projected to $q_{peak} \le 80 \text{ MW/m}^2$ for future devices
 - Density and impurity control (low T_e)
 - Impulsive heat and particle loads
 - Compatibility with good core plasma performance
- NSTX (Spherical Tokamak, aspect ratio A=1.4-1.5)
 - I_p ≤ 1.4 MA, P_{in} ≤ 7.4 MW (NBI)
 - $q_{peak} \le 15 \text{ MW/m}^2, q_{||} \le 200 \text{ MW/m}^2$
 - Graphite PFCs with lithium coatings
- DIII-D (Conventional tokamak, aspect ratio A~2.7)
 - $I_p \le 1.5$ MA, $P_{in} \le 20$ MW NBI + 3.6 MW ECH
 - $q_{peak} \le 10 \text{ MW/m}^2$
 - Graphite PFCs

National Spherical Torus Experiment at PPPL

Snowflake divertor configuration predicted to have significant benefits over standard X-point divertor


- Snowflake divertor
 - Second-order null
 - $B_p \sim 0$ and grad $B_p \sim 0$ (Cf. first-order null: $B_p \sim 0$)
 - Obtained with existing divertor coils (min. 2)
 - Exact snowflake topologically unstable
- Predicted geometry properties (cf. standard divertor)
 - Increased edge shear: ped. stability
 - Add'l null: H-mode power threshold, ion loss
 - Larger plasma wetted-area A_{wet} : reduce q_{div}
 - Four strike points
 : share q_{II}
 - Larger X-point connection length L_x : reduce q_{II}
 - Larger effective divertor volume V_{div} : incr. P_{rad} , P_{CX}
- Experiments: TCV, NSTX, DIII-D


D. D. Ryutov, PoP 14 (2007), 064502; Plasma Phys. Control. Fusion 54 (2012) 124050



Snowflake divertor configurations obtained with existing divertor coils in NSTX and DIII-D

- Significant increase in the snowflake divertor (cf. standard divertor)
 - Plasma-wetted area (flux expansion)
 - Region of low B_{p} field in divertor
 - Magnetic field line length
- Divertor coil currents 0.5-4 kA within safety margins
- Steady-state snowflake configurations sustained for many energy confinement times τ_{E}
 - NSTX: 0.5 s
 - DIII-D: 3 s

DIII-D snowflake: good H-mode confinement maintained, heat flux reduction, ELM reduction

30

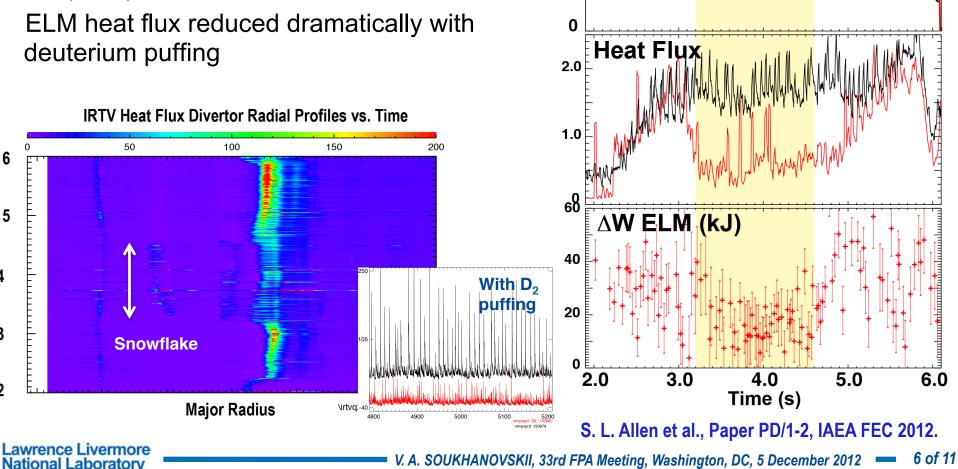
20

10

Flux

Expansion

150675 2


- Core confinement (H89P > 2) and pedestal constant
- Divertor heat flux reduced 2-3X
- $\Delta W(ELM)$ reduced

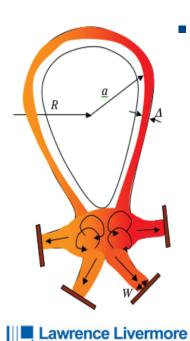
6

Time (s)

2

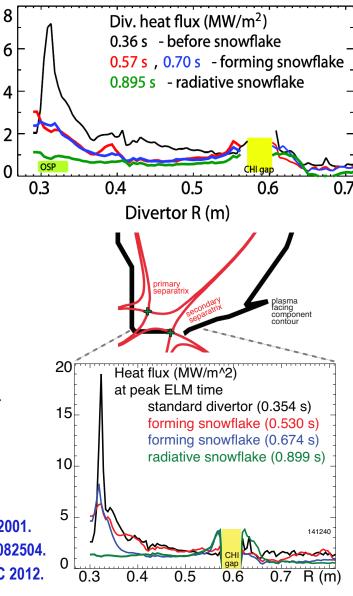
deuterium puffing

NSTX studies demonstrated compatibility of snowflake divertor with H-mode confinement, heat flux reduction

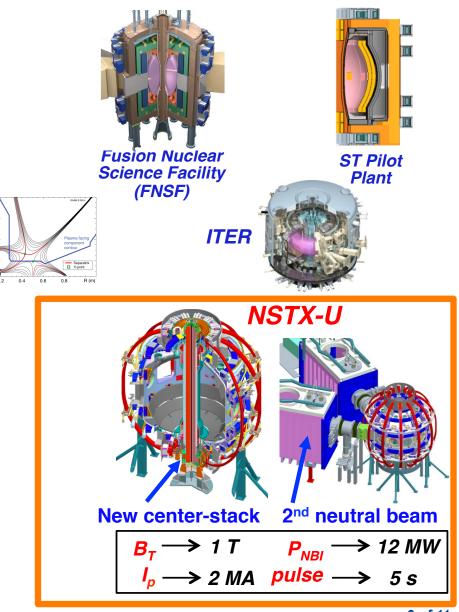

8

6

4


0

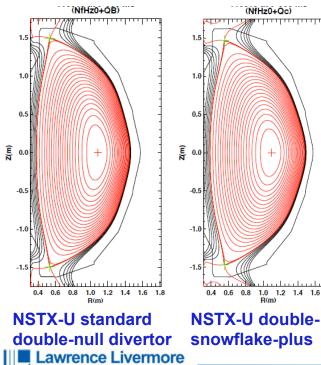
- NSTX snowflake divertor experiments
 - H-mode confinement unchanged
 - W_{MHD}~250 kJ, H98(y,2)~ 1, β_N~5
 - Core impurity reduced by up to 50 %
 - Pedestal stability and ELMs affected
 - Divertor heat flux significantly reduced
 - By up to 80 % between ELMs (from 5-7 to \sim 1 MW/m²)
 - By up to 70 % at peak ELM

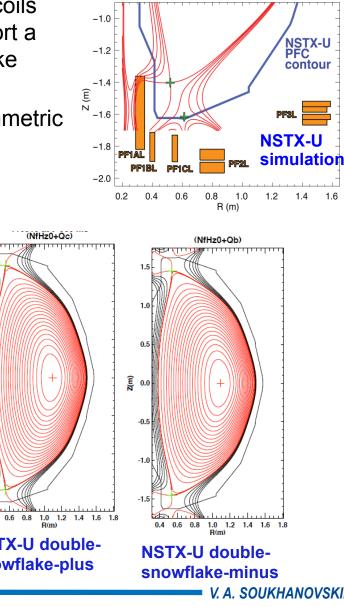

National Laboratory

- ELM heat transport theory
- Reduced surface heating due to increased ELM energy deposition time
- Convective mixing of ELM heat in nullpoint region -> heat flux partitioning between separatrix branches (strike points)
 - V. A. Soukhanovskii et al., Nucl. Fusion 51 (2011) 012001. V. A. Soukhanovskii et al., Phys. Plasmas 19 (2012) 082504.
 - V. A. Soukhanovskii et al., Paper EX/P5-21, IAEA FEC 2012.
 - D. D. Ryutov et al., Paper TH/P4-18, IAEA FEC 2012

NSTX-U research aims at predictive understanding needed for fusion energy development facilities

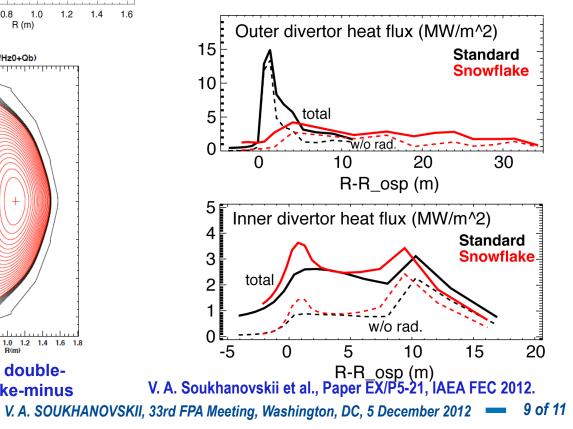
- Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)
- Develop solutions for plasmamaterial interface
- Advance toroidal confinement physics predictive capability for ITER and beyond
- Develop ST as fusion energy system



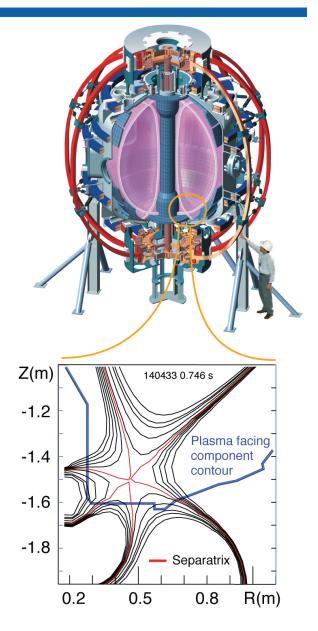

Snowflake divertor is a leading divertor power exhaust candidate for NSTX-U, modeling projections optimistic

- NSTX-U divertor coils designed to support a variety of snowflake configurations
 - Up-down symmetric • possible

NSTX-U simulation

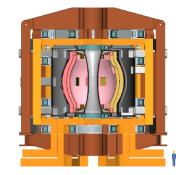


National Laboratory

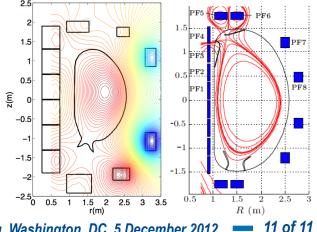

16

- Predictions for 12 MW NBI case with UEDGE code
 - P_{SOL} =9 MW
 - Standard div. heat flux 15-20 MW/m²
 - Snowflake 2-4 MW/m²

Experiments suggest the snowflake divertor configuration may be a viable divertor power exhaust solution


- Results from DIII-D and NSTX:
 - Steady-state snowflake configuration compatible with good H-mode confinement
 - All predicted magnetic geometry properties realized
 - Plasma-wetted area, connection length much higher than in the standard divertor
 - Effects on H-mode pedestal stability and ELM energy
 - Significant reduction of steady-state and ELM peak divertor heat flux
 - Potential to combine with radiative divertor solution
- Future plans:
 - Proposing new experiments in DIII-D in 2013-2014
 - Preparations for experiments in NSTX-U
 - Synergistic effects of snowflake and lithium plasma-facing components
 - Concept development for FNSF and DEMO
 - ST-FNSF planning activity at PPPL

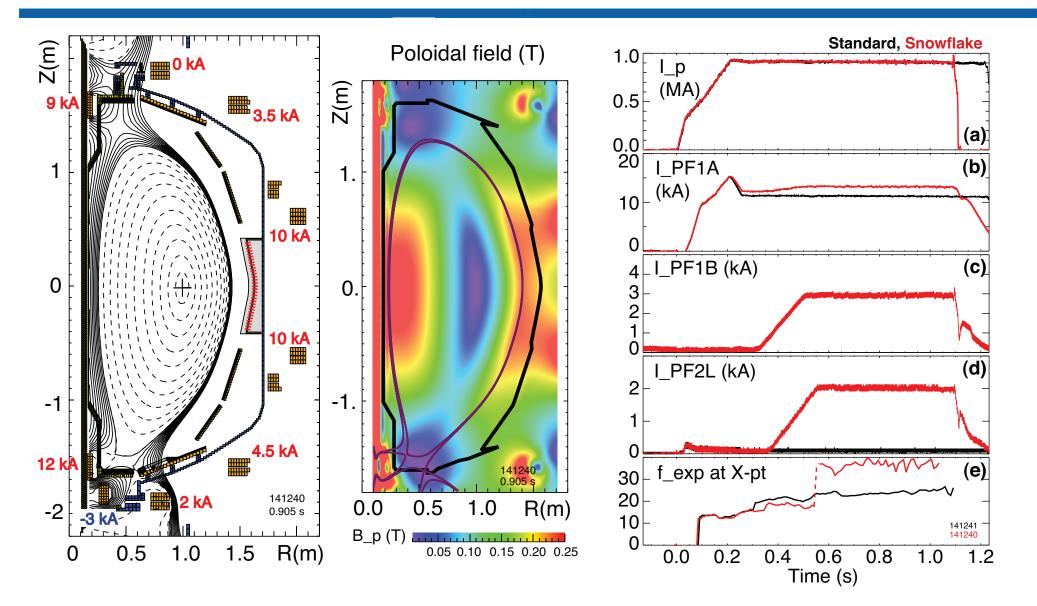




Snowflake divertor concept rapidly developing into mainstream fusion research direction

- Snowflake divertor concept development by LLNL
 - Theory D. D. Ryutov et al., 2007 present
 - Experiment
 - NSTX tokamak, 2009 2011
 - DIII-D tokamak, 2012 present
 - 6 Invited and Oral talks IEAE FEC, PSI, APS, EPS, ICC conferences
 - R&D 100 Award 2012
- International snowflake divertor research on the rise:
 - Switzerland: TCV tokamak ongoing experiments
 - China: modeling configurations for HL-2M and CFETR tokamak proposals
 - Italy: snowflake configurations developed for FAST satellite tokamak proposal
 - Britain: planning snowflake configurations for MAST-U tokamak (2015)
 - France: WEST tokamak planning divertor coils

Backup slides

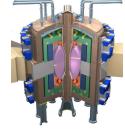

Various techniques developed for reduction of heat fluxes q_{\parallel} (divertor SOL) and q_{peak} (divertor target)

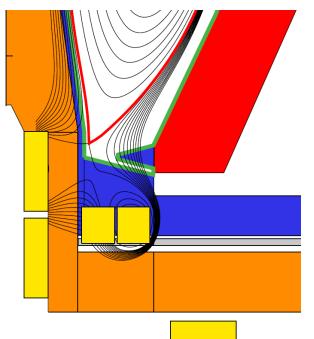
$$q_{peak} \simeq \frac{P_{SOL}(1 - f_{rad})f_{geo}\sin\alpha}{2\pi R_{SP}f_{exp}\lambda_{q_{\parallel}}}$$

$$A_{wet} = 2\pi R f_{exp} \lambda_{q_{\parallel}}$$
$$f_{exp} = \frac{(B_p/B_{tot})_{MP}}{(B_p/B_{tot})_{OSP}}$$

- Promising divertor peak heat flux mitigation solutions:
 - Divertor geometry
 - poloidal flux expansion
 - divertor plate tilt
 - magnetic balance
 - Radiative divertor
- Recent ideas to improve standard divertor geometry
 - X-divertor (M. Kotschenreuther *et. al*, IC/P6-43, IAEA FEC 2004)
 - Snowflake divertor (D. D. Ryutov, PoP 14, 064502 2007)
 - Super-X divertor (M. Kotschenreuther *et. al*, IC/P4-7, IAEA FEC 2008)

Snowflake divertor configurations obtained with existing divertor coils, maintained for up to 10 τ_{E}





Snowflake divertor designs are studied for next-step spherical tokamak based divices

- ST-FNSF development studies are quantifying performance dependence on size
- Building on achieved/projected NSTX/NSTX-U performance and design
- Divertor PF coil configurations identified to achieve high δ while maintaining peak divertor heat flux < 10MW/m²

Parameter	Fusion Nuclear Science Facility
Major Radius R ₀ [m]	1.3
Aspect Ratio R ₀ / a	≥ 1.5
Plasma Current [MA]	4 - 10
Toroidal Field [T]	2 – 3
Auxiliary Power [MW]	22 – 45
P/R [MW/m]	30 - 60
P/S [MW/m ²]	0.6 – 1.2
Fusion Gain Q	1 – 2

Snowflake

- Flux expansion = 40-60, $\delta_x \sim 0.62$
- $1/sin(\theta_{plate}) = 1-1.5$
- Good detachment (NSTX data) and cryo-pumping (NSTX-U modeling)

J. Menard et. al., Paper FTP/3-4, IAEA FEC 2012

