Polywell Fusion Electrostatic Fusion in a Magnetic Cusp

Jaeyoung Park Energy Matter Conversion Corporation (EMC2) Fusion Power Associates Meeting (December 17, 2014) Support from US Navy Contract: N68936-09-C-0125

Energy Matter Conversion Corporation (EMC2)

Contributions from EMC2 Personnel

<u>4 Scientists, 5 Engineers/Technicians, 2 Support</u>

Mike Skillicorn: Design, construction and maintenance of WB-8 device Paul Sieck: WB-8 operation, control and safety system, and DAQ Dustin Offermann: Plasma diagnostics – Spectroscopy, lasers and x-ray Eric Alderson: Plasma diagnostics – Probes and particle diagnostics Mike Wray: Vacuum and gas handling system and lab Management Noli Casama: Electrical power system Kevin Davis: Microwave system and HV pulse power operation Andy Sanchez: Operation Support and Numerical Simulation Grace Samodal: Business/Operations Management Yoko Corniff: Accounting and HR Jaeyoung Park: Lead the WB-8 project

EMC2 works closely with Dr. Nicholas A. Krall on Polywell theory

Contributors to the Polywell Fusion Concept

Philo Farnsworth Electric fusion & inventor of television

Harold Grad MHD theory and Cusp confinement

Robert Bussard Polywell Fusion, Nuclear Rocket, Bussard Ramjet

James Tuck: Picket Fence, Elmore-Tuck-Watson virtual cathode, & Explosive focus for A-bomb

Polywell Fusion Principle

Combines two good ideas in fusion research: Bussard (1985)

- **a) Electrostatic fusion:** High energy electron beams form a potential well, which accelerates and confines ions.
- **b) High \beta magnetic cusp**: High energy electron confinement in high β cusp: Bussard termed this as "wiffle-ball" (WB).

Electrostatic fusion provides

- Ion heating
- Ion confinement

for high β cusp

<u>High β cusp provides</u> - High energy electron confinement

for electrostatic fusion

Polywell Cusp Magnetic Fields

- 6 coil Polywell
 cusp magnetic
 field lines
 - Electron beam injection along the cusp openings

Potential Well by e-beam Injection (1995)

However, the potential well decayed away with increase in plasma density above 1×10^9 cm⁻³, which was contributed to the insufficient confinement of fast electrons inside the Polywell cusp field (*Krall et al, Physics of Plasmas, 1995*)

Progression of EMC2 Polywell Devices

Since 1994, EMC2 had built and operated successive test devices from Wiffle-Ball-1 (WB-1) to WB-8 to demonstrate confinement of high energy electrons in a magnetic cusp.

Motivation of Magnetic Cusp

FIG. 19-2. CHRONOLOGY OF THE SHERWOOD PROGRAM, showing methods of plasma confinement in experiments to date.

Magnetic cusp was introduced to magnetic fusion program for plasma stability and high beta (β =1) operation

From "Project Sherwood: The U. S. Program in Controlled Fusion" by Amasa Bishop (1958).

Grad's High Beta Cusp Conjecture

- Between 1955-1958, NYU group led by Grad investigated the case of plasma confinement in a high β magnetic cusp.
- In Grad's view, a boundary between plasma and magnetic fields are very different for low β and high β case.
- For high β cusp, he envisioned "a sharp transition layer to exist between plasma and B-fields, while diamagnetic effect results in a field free central region"
- Plasma particles will undergo specular reflection at the boundary except for the particle moving almost exactly in the direction of the cusp \rightarrow the plasma loss rate will be greatly reduced and have gyro-radius scaling.

Plasma Confinement in Cusp at High β

In high β cusp, a sharp transition layer exists between plasma and B-fields. Plasma particles will undergo specular reflection at the boundary except for the particle moving almost exactly in the direction of the cusp. The loss rate will have gyro-radius scaling.

Theoretically conjectured

Loss current per cusp by Grad and NYU team

$$\frac{I_{e,i}}{e} = \frac{\pi}{9} n_{e,i} \upsilon_{e,i} \times \pi (r_{e,i}^{gyro})^2$$

0.5s confinement time for 100 keV electron with 7 T, 1m radius, 6 coil cusp \rightarrow favorable for a net power device.

History of Cusp Confinement Efforts

- Grad's confinement enhancement conjecture made the cusp approach to be promising for a net power fusion reactor.
- For the next 20 years, detailed experiments were conducted on ~20 different devices and ~200 papers were published related to the cusp confinement as a result. Two excellent review articles by Spalding (1971) and Haines (1977).
- However, most efforts on cusp confinement stopped by 1980 due to a lack of progress.

High Beta Cusp Experiments in 1960s using plasma injection

IABLE I													
Typical Injection—Cusp Experiments ^a													
References	Plasma source; confinement geometry	Diameter D (cm)	Length L(cm)	B (max) (kG)	n_e cm ⁻³	W″ keV	T _e eV	Quoted β near axis					
67	Single-pulse coaxial gun; axisymmetric quadrupole and octupole	90	120	4.5	10 ¹² -10 ¹⁴	5 × 10 ⁻²	15	?					
68	12 conical Z-pinch guns; axisymmetric triple cusp (radial injection)	20	45	1.9	7.5 × 10 ¹⁴	>5 × 10 ⁻³	4.5	<1					
69	Coaxial gun; spindle-cusp	53	53	12	\sim 3 \times 10 ¹³	13	Nonthermal	<1/2					
70, 71	2 θ-Pinch (single pulse) guns: spindle cusp	25	230	3.2	~1015	2.4 × 10 ⁻¹	20	>> 0.90 in core					
72	Conical Z-pinch; spindle cusp	40	40	4	(3–10) × 10 ¹⁵	~1	?	~1					
73	Titanium guns; spindle cusp (radial injection)	12	12	3.9	~8×10 ¹⁵	5×10^{-2}	>5	~1					
74	2 multiple-pulse coaxial guns; spindle cusp	17	15	3.9	10 ¹³	2×10^{-2}	6	~1					

" Axial injection unless radial injection at ring cusps is specifically noted. W" is the injected energy in keV.

Energy Matter Conversion Corporation (EMC2)

102

Cont. High Beta Cusp Experiments in 1960s using plasma compression

TABLE II Recent Compression—Cusp Experiments											
Refs.	Description	D (cm)	<i>L</i> (cm)	<i>B</i> kg	Rise time (µsec)	\hat{n} (cm ⁻³)	<i>Te</i> eV	β _A			
75	Adiabatic spindle cusp	11	8	25	4.5	?	?	?			
76–78	Ditto (shock preheat)	20	20	24	15	$2.5 imes 10^{16}$	15	0.98			
79	Ditto (gun preheat)	20	20	34	15	10 ¹⁶	70	~1.0			
80	Shock-heated spindle cusp	10.5	13	70	1•1	10 ¹⁷	120	?			
81	Linear θ -cusp- θ pinch	5	2.5	27	1	\sim 3 $ imes$ 10 ¹⁶	100-180	?			
82 –84	Shock-heated linear cusp-θ-cusp pinch	19	50	60	2.1	$1.5 imes 10^{16}$	150	0.99 ± 0.01			
85	Shock-heated toroidal hexapole	6	163	10	3.0	$3 imes 10^{16}$	50	0.8			
86	Shock-heated	6	163	21	3.0	$3\cdot5 imes10^{16}$	93	0.4			
	toroidal hexapole	6	163	1 0·5	3.0	$1.4 imes10^{16}$	62	1.0			

From review article by I. Spalding, "Cusp Containment" In Advances in Plasma Physics. (A. Simon, W. B. Thompson, Eds., Wiley, New York, 1971)

Energy Matter Conversion Corporation (EMC2)

Recent Experiments at EMC2 (EMC2 San Diego Facility)

EMC2 Experimental Plan

- 1. Plasma injection to the cusp
 - Use high power arc (solid target) plasma injectors
- 2. Verify high β plasma formation in the cusp
 - Measurements on plasma density, magnetic flux and electron temperature
- 3. High energy electron injection to high β cusp
 - LaB_6 based electron beam injector, used as fast test particles.
- 4. Confinement measurement of high energy electrons in the cuspTime resolved hard x-ray intensity from bremsstrahlung

Bulk (cold & dense) plasma from arc injectors provides plasma pressure (high β) to modify cusp B-fields, while the confinement property is measured for high energy electrons in the cusp.

First ever confirmation of high β cusp confinement enhancement (October 23, 2013)

Cusp confinement vs. Injection input power

Cusp confinement vs. initial B-fields

No confinement enhancement at B=0 but we need to do more to understand B-field effects

Our Findings on High β Cusp Confinement

Increase in X-ray signal

- Coincides with high β plasma state in the cusp
- Only observed when there is sufficient flux exclusion or plasma injection reaches a threshold
- Peak increase is 10-20x or more compared to low β state
- Exhibits asymmetrical time behavior: gradual increase followed by rapid decrease
- Clearly separated from W impurities injection in time domain

We believe our x-ray measurements unambiguously validate the enhanced electron confinement in a high β cusp compared to a low β cusp

Technical paper submitted to Physical Review X and preprint available on arXiv:1406.0133 (2014)

A Path to Polywell Fusion

High β cusp + Electrostatic fusion at the same time

Merits of Polywell Fusion Reactor

Scientific merits

- MHD stability
- High β operation
- Electrostatic heating of ions
- No helium ash issue

Engineering merits

- Compact size
- Heating by electron beam injection
- Natural divertor
- Modular, noninterlocking coils
- Remote first wall

Polywell fusion may offer a low cost and rapid development path

Movie of Polywell Fusion Reactor Assembly

Next Phase: Last Part of Proof-of-Principle

- Sustained high β
 operation (~ 5 ms)
- Demonstration of ion heating (>10 kV) by
 - e-beam injection
- Verify Grad's cusp

scaling

<u>3 year, \$25-30M program to complete proof-of-principle</u> Success will be defined by 1) high energy electron confinement within a factor of 10 from Grad's conjecture and 2) minimum 30% ion heating efficiency via e-beam.

Teller's Comment on Beta

"The qualitative properties of the plasma depend on the ratio of pressures in the plasma and the magnetic field. The former is the plasma pressure p, the latter $B^2/8\pi$. The ratio of the two quantities $8\pi p/B^2$ is known as β . In general, <u>the plasma</u> behavior is most simple for low- β values and most interesting for high- β values."

Teller, page 13-14, "Fusion ,Volume 1, Part A: Magnetic Confinement, edited by Edward Teller, 1981

Supplemental Slides

Electrostatic Fusion

Deep negative potential well (1) accelerates and traps positive ions (2) until they generate fusion reactions Contributions from Farnsworth, Hirsch, Elmore, Tuck, Watson and others

Operating principles

(virtual cathode type)

- e-beam (or grid) accelerates electrons into center
- Injected electrons form potential well
- Potential well accelerates/confines ions
- Energetic ions generate fusion near the center

Attributes

- Excels in generating energetic ions with good confinement
- But loss of high energy electrons is too large

Net power generation is unlikely (present efficiency:1-10x10⁻⁶)

Question on Plasma Stability

Reference: "Project Sherwood: The U. S. Program in Controlled Fusion" by Bishop (1958).

- Question on Plasma Stability by Teller in 1954
- "Attempts to contain a plasma as somewhat similar to contain jello using rubber bands"
- Basis of interchange instability (plasma version of Rayleigh Taylor instability) and idea of "good curvature" vs. "bad curvature"

From Principles of Plasma Physics Krall & Trivelpiece (1973) Stronger instability shown in an outer part of torus "Tokamak ballooning mode instability" from General Atomics Gyrokinetic simulation

Experimental Setup for high β cusp confinement

Plasma Gun (300 MW solid arc)

X-ray diode (2 keV x-rays and up, corner and face views)

Chamber size: 45 cm cube, Coil major radius; 6.9 cm Distance between two coils: 21.6 cm, B-field at cusp (near coil center) 0.6 - 2.7 kG

Experimental Setup (continued)

Solid arc plasma injector

Plasma injection by co-axial guns (j x B) using solid fuel - Ignitron based pulse power system (40 μ F cap holds 3 kJ at 12kV) - ~100 kA arc current \rightarrow ~300 MW peak power and ~7 μ s pulse

 $-\beta = 1@2.5 \text{ kG}: 1.5 \times 10^{16} \text{ cm}^{-3} \text{ at } 10 \text{ eV or } 100 \text{J in a } 10 \text{ cm radius sphere}$

solid arc using polypropylene film 2 mm A-K gap

Animation of plasma injection

Dual arc plasma injection movie

High β plasma formation (two plasma guns)

Plasma density on the order of 10¹⁶ cm⁻³
from Stark broadening of Hα line
Laser interferometer provides single shot line integrated density variation in time

- Electron temperature is estimated
- $\sim 10 \text{ eV}$ from C II and CIII emission

- H α , C II line by photodiode and visible spectra by gated CCD is used to monitor T_e variation in time

High energy electron beam produces hard x-rays

Transit time: ~7 ns for 7 keV electron for 22 cm transit Expected confinement time: ~45 ns for low β and ~18 µs for high β (x400 increase)

Bremsstrahlung x-ray emission from interaction between beam electrons and plasma

Bremsstrahlung radiation from e-beam interaction with plasma ions

 $e + ion \rightarrow e + ion + hv$ \longrightarrow $P^{Br} \propto n_e^{beam} E_{beam}^{1/2} n_{ion} Z_{eff}^2$

Bremsstrahlung x-ray intensity → Direct measurement of beam e-density inside Cusp

Careful measurement is required to eliminate spurious radiation from impurities, vacuum wall, coil surfaces, and characteristic line emission

Typical beam target x-ray spectrum

X-ray collecting optics to eliminate unwanted signals

Hard x-ray filter

25 μm thick light tight Kapton filter (works as vacuum interface)

Filter Transmission

C22H10N205 Density=1.43 Thickness=25. microns

Filter has sharp cutoff at ~2 keV photon energy

 \rightarrow blocks any characteristic x-ray emission from light elements up to ¹⁴Si and ¹⁵P

- \rightarrow blocks UV-visible light from plasmas
- \rightarrow blocks charged particles from reaching the detector

Confirmation of X-ray filter vs. beam energy

- X-ray was generated by electron beam on Stainless Steel target
- 25 μm thick Kapton filter works well to eliminate X-ray photons below 2 keV

Spatial collimation of x-ray detectors

- Collimation is designed to eliminate direct line-of-sight view of metal surfaces
- In addition, opposite sides of the chamber wall are covered using Kapton film and quartz window
- Both chords allow <u>good volume averaging</u> of x-ray emission from core plasmas

Confirmation of X-ray collimation

e-beam into vacuum magnetic field (no plasma) generates no x-ray response from the diode detector
Indication of well collimated x-ray optics Image plate (x-ray film) exposure at the face cusp detector location

- Uniform exposure
- No sign of spatial structure from coils & walls
- -10 mTorr $N_{\rm 2}$ gas target
- 20 ms exposure with 4A@7 kV e-beam
- B-field at 1.4 kG

Reproducibility of high β cusp confinement

6 consecutive shots with ~ 200 J of injected plasma energy at 2.7 kG B-fields → Estimated cusp beta ~ 0.7 from line averaged density at $T_e \sim 10 \text{ eV}$

All six shots show distinctive high β phase \rightarrow good reproducibility

Time averaged plasma images

High β cusp formation: intense plasma in the core region

Energy Matter Conversion Corporation (EMC2)

Time resolved spectroscopy on W-impurity

• Line emission intensities from main ion species (H and C) decay early

• Despite plasma density decay (& cooling of plasma), Tungsten line intensities peak later in time and decay slowly --> indicates gradual build up of Tungsten impurity.

--> x-ray peak late in the shot (40-50 µs) is from e-bam interaction with Tungsten

Time resolved spectroscopy for impurity transport

During the high β phase, plasma emission shows strong C⁺ lines & presence of W⁺ lines (Note that avg. $n_e \sim 1.5 \times 10^{16}$ cm⁻³ and $T_e \sim 10$ eV during this period)

Time resolved spectroscopy (cont.)

At later time, plasma emission is dominated by W neutral lines, while C⁺ and W⁺ lines disappear (Note that avg. $n_e \sim 0.2 \times 10^{16} \text{ cm}^{-3}$ and $T_e < 10 \text{ eV}$)

Estimate of High β Confinement Time

- Note the shape of x-ray intensity profile: a gradual rise and a rapid drop

- From time response of x-ray signal $\rightarrow \tau > 2.5 \ \mu s \ (2x \ \tau \sim x$ -ray signal rise time)
- 2.5 μ s is about ~ 50 times better than low β cusp confinement time

- The observed confinement enhancement is very significant and compares well with the theoretically predicted high β cusp confinement time by Grad and his team

Unresolved issues on high β cusp

1. Decay of good confinement phase

- Decay mechanism: plasma loss/plasma cooling or magnetic field diffusion or something else
- How to extend high β state and prevent the decay

2. Topological information on cusp magnetic fields during high β state

- Thickness of transition layer
- Magnetic field lines near the cusp openings