LLNL Tokamak Boundary Research On DIII-D

by D.N. Hill, S.L. Allen, V. Soukhanovskii, B.I. Cohen

Presented at the Fusion Power Associates 35th Annual Meeting and Symposium Fusion Energy: Recent Progress and The Road Ahead

December 16-17, 2014

This work was supported by the US Department of Energy under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-AC02-09CH11466, SC-G903402, DE-AC05-00OR22725, DE-FG02-08ER85195, and DE-FG02-04ER54761. LLNL-PRES-665382

D. Hill FPA December 2014

Developing Advanced Divertor Solutions Requires an Innovative Approach in Physics Combined w/Engineering

2D Divertor Thomson Scattering Measurement Opens Unique Window Into Physics of Divertor Detachment

2D Temperature Map

- Detached divertor solution provides
 - Low heat flux, low erosion
- Gap Validated predictive capability for optimizing divertor
 - Expand operating window
 - Enable high performance core
- Recent divertor Thomson upgrade improves low-Te performance
 - Sub-eV temperature range captures recombination physics
- Systematic studies quantify key dependencies to compare with divertor simulation codes

A. McLean, PSI 2014

H-mode NBI Power Scan (Fixed I_p and B_{tor}) Shows Constant Detachment Transition Threshold Separatrix Density

Detachment onset has a weak effect on H_{98} , even H_{98} though radiation localized Detached near X-point 0 40 Sharp detachment transition 2.5 MW 30 at nearly fixed separatrix density 5.5 MW 9.5 MW 20 Sharp transitio 10 **Divertor** This is highly desirable Temperature (eV) for decoupling divertor (from core 0.2 0.4 0.6 Upstream Separatrix Density (10²⁰ m⁻³)

A. McLean, APS 2014

Comprehensive Detachment Studies Challenge Divertor Simulations to Drive Improvements to Edge Models

M. Groth, APS 2014

- Both SOLPS and UEDGE over-predict divertor T_e with measured C levels
 - Raising total radiation (P_{rad}) to observed levels matches divertor T_e
 - But over-predicts line radiation
- Nonlinear detachment physics also challenges models
 - Codes predict more gradual transition to detachment than experiment
 - Atomic/molecular rates exponentially sensitive to T_e < 2eV

Expect dramatic improvement over next five years!

LLNL Developed a Prototype Wide View Visible-IR Periscope for ITER and Installed It on DIII-D

Wide-Angle Periscope View Shows ELM Interaction With Plasma Facing Components in DIII-D

 Δ Time = 1.25 ms

- High speed (~1ms), high resolution color camera
 - 2560 by 1600 pixels
 - 800 frames per second
- Used with filters for positive identification
- Doubly-ionized carbon (C⁺²) emission before and during an ELM
- Coherence imaging for plasma flow measurements will be added in 2015

1679.731 ms

1680.981 ms

S.L. Allen, APS 2014

Visible-light Coherence Imaging Reveals 2D Ion Flow Distribution in the Divertor

SOL plasma flow plays a key role in detachment and impurity retention

Large Poloidal Flux Expansion Reduces Peak Divertor Heat Flux Leading to Naturally Detached Divertor

High flux expansion divertor studies in NSTX

V. A. Soukhanovskii¹, R. Maingi², R. E. Bell³, D. A. Gates³, R. Kaita³, H. W. Kugel³, B. P. LeBlanc³, R. Maqueda⁴, J. E. Menard³, D. Mueller³, S. F. Paul³, R. Raman⁵, A. L. Roquemore³

Divertor approached detachment at lower X-point heights

- Heat flux profiles (a)
 - Peak q reduced by x 8
 - Width changed substantially
 - Peak moved away from separatrix
- D-α profiles (b)
 - Higher peak and broader profile at lower X-point due to recombination
- Balmer *n*=10-2 line intensity increased in vicinity of outer strike point at lower X-point height (c) – recombination and higher n_e
- Emission from C II and C III increased at outer strike point at lower X-point height (d, e)

Color coded X-point heigh: Low (6-7 cm) Medium (9-12 cm) High (20-22 cm)

8

6

a)

q (MW/m^2)

Soukhanovskii, EPS 2014: Large poloidal flux expansion leads naturally to detachment.

Lawrence Livermore National Laboratory

Snowflake-Minus Configuration Features Large Poloidal Flux Expansion in Full Divertor, Large Reduction In Heat Flux

Snowflake Minus

- <u>Snowflake Divertor</u> configuration (D. Ryutov, V. Soukhanovskii) reduces heat flux by flux expansion, all along X-point to target plate.
- Core confinement remains high
- ELM heat flux reduced dramatically with gas puffing

S.L. Allen, IAEA 2012 V. Soukhanovskii, IAEA 2014

Configurations to Increase Divertor-Target Poloidal Flux Expansion in DIII-D (U Texas X-Divertor)

Recent UT experiments at DIII-D B. Covelle, M. Kotschenreuther

LLNL Team Provides World-Class Science to DIII-D and NSTX to Help Develop the Divertor Solution for Tokamaks

DIII-D Responsibilities

- Divertor Thomson scattering
- Divertor IR heat flux imaging
- Divertor impurity imaging
- Full cross section VIS/IR ITER prototype periscope
- Coherence Imaging Flow measurements
- NIR spectrometer
- EUV SPRED spectrometer soon

NSTX-U Responsibilities

- Supersonic gas injectors
- EUV Spectrometers (3)
- Laser blow-off system
- High resolution divertor spectroscopy (VUV, NIR, UV-VIS)
- Divertor impurity imaging (9 line cameras, 2D fast cameras, bolometers, and filterscopes)
- Optical Penning Gauge

LLNL Edge and Divertor Simulation Codes: UEDGE, BOUT++, COGENT

