Summary:

Innovative Confinement Concepts, Operational Scenarios, and Confinement

22nd IAEA Fusion Energy Conference

by Tony S. Taylor

Assistance:

T. Luce, C. Greenfield, M. Wade, D. Hill, J. deGrassie, W. Solomon, C. Petty, G. McKee, C. Holland, E. Doyle, R. Groebner, A. Leonard, P. Gohil

October 18, 2008

Key themes of this presentation

- ITER is our next major fusion energy experiment
 - ITER's success is our priority
- Substantial progress has been made in establishing operational regimes required for success of ITER
 - Many exceed requirements for ITER
- Understanding of transport is important for confident projection and optimization of all magnetic confinement schemes
 - Key element is validation of theory and modeling by experiment

Outline

Topical area	Number of papers
Innovative Confinement Concepts	13
Operational Scenarios	16
Confinement experiments	
Particle transport	8
Rotation and momentum transport	10
Energy transport and turbulence	42
L-H transition and pedestal	7

Innovative Concepts Research Is Focused on Novel Solutions to Fusion Challenges

- 13 papers addressing a wide range of topics
 - ✓ Field Reversed Configurations (simply-connected, no TF coils)
 - ✓ Spheromak (simply-connected, no TF coils)
 - Magnetic mirror (possible neutron source for component testing)
 - Plasma focus (hot-dense plasma fusion neutron and x-ray sources)
 - Magnetized Target Fusion for HEDLP (High Energy Density Laboratory Plasmas)
 - Levitated dipole (high-beta stability and confinement)
 - Design study for direct- energy conversion
 - Alternative divertor materials and configurations (power handling and particle control)

22nd IAEA Fusion Energy Conference- Summary Session

Progress and excellent science in every area

Field-Reversed Configuration and Spheromak **Experiments Are Exploring Sustainment Physics**

HIT-SI AC-driven spheromak experiment

- Two AC injectors 90° out of phase yield constant helicity injection:
- 34kA spheromak current

Jarboe, et al. IC/P4 - 5

Levitated Dipole Experiment: High-beta Plasma Confined With Fully Levitated Coil

- Increased hot-electron stability
- Density profile varies as expected for marginal stability (n ∝ 1/Vol_{flux tube})
- Fluctuation studies now underway

Garnier, et al. IC/P4 - 12

ECRH Power XX 8 Line Averaged Density < 10¹⁶ m⁻³ > Levitated non-Levitated **Diamagnetic Flux** 10⁻³ Weber 10 12 14 0 2 Δ 6 8

Time (sec)

New Divertor Configurations Seek to Reduce Peak Heat Flux and Improve Edge Stability

"Snowflake" second-order field null $B_{nol} \sim r^2$ (r = distance from the null) 1.2 CORSICA 1.0 The separatrix near equilibrum the null-point acquires calculation hexagonal, snowflake-like shape .2 - 6 -1.0-1.2 -1.4 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 DIII-D, existing set of PF coils, Iplasma≈1MA

- Increased shear in pedestal (ELMs)
- Increased connection length

Ryutov, et al. IC/P4 - 8

Operational Scenario Development Continues Preparation for Burning Plasma Operation

- ITER scenario development has advanced significantly
 - Startup scenarios improved
 - ELMing H-mode for Q=10 demonstrations
 - Advanced scenarios lead toward improved performance and long pulse operation

Steady-state fusion optimizations are underway

- Tokamak experiments reach 100% bootstrap current
- Stellarator performance improvement seen by configuration optimization
- Work is starting on the tremendous challenge of coupling the burning plasma core to boundary solutions required for long lifetime of the plasma facing components

Substantial Progress Reported on the Development and Characterization of Operational Scenarios

- Baseline
 - Reference operating case
 DIII-D
 - Q=10 at 15 MA, $\beta_N \approx 1.8$, $q_{95} \approx 3$
- Advanced inductive
 - High fusion gain
 - − Q=30 at 15 MA, $β_N \approx 2.8$, $q_{95} \approx 3$
- Hybrid
 - Long pulse, high fluence
 - − Q=5 at 12 MA, $\beta_N \approx 2.5$, $q_{95} \approx 4$
- Steady-state
 - Reference operating case
 - Q=5 at 9 MA, $\beta_N \approx 3$, $q_{95} \approx 5$

Other contributions from ASDEX-Upgrade and C-Mod

Performance of ITER Baseline Scenario Has Been Validated

- Achieved $\beta_N = 1.8$, $H_{98} = 1.0$
- Confirms expectations for ITER of:
 - Large type I ELMs
 - Reduced inductance

Other contributions from ASDEX-Upgrade, C-Mod, JET, and JT-60U

Stationary Hybrid Plasmas with Performance Well Above the ITER Q=10 Requirements Have Been Demonstrated

Hybrid Characteristics

• Flat q profile with $q_0 \sim 1$

Long-pulse, high performance operation also demonstrated on JET

Other hybrid contributions from ASDEX-Upgrade, JET, and DIII-D

High confinement demonstrated in the hybrid regime

Steady-state Scenario Optimization Shows Great Progress

- Optimization of shape, current profile, and pressure profiles have been investigated in DIII-D, JET, and JT-60U
- Example shown from JET has high β with good performance for ~ τ_R
- Contributions also from JT-60U and DIII-D

Sustained Operation with $\beta_N \sim 5$ Achieved Through Plasma Shape Optimization

Tools for current profile optimization are being developed

Lower Hybrid Current Profile Control

Phase control used to modify j(r)1.0 🗄 EI_p (MA) PLH (MW) 0.0 2.0 V_{loop} (V) ANALON WWW xxxxxxxxxxx C-Mod man mannan -0.5 1.8 Internal Inductance 1.0 1.4 q_0 n_{||} = 1.5 n_{||} = 1.9 0.6 1.0 1.5 0.5 Time (ms)

J.R. Wilson EX/P6-21

- Magnitude of CD in agreement with Fisch-Karney theory
- Current is driven off axis, q(0)>1 (profiles from MSE-constrained EFIT)
- Largest magnitude of current driven by fastest waves
- Results being used to validate modeling
 - GENRAY/CQL3D + TORIC-LH)

J.C. Wright TH/P3-17

Alcator

C-Mod

Significant progress has been made towards optimization of the current and pressure profiles for steady-state operation

Full Bootstrap Current Operation Demonstrated

Stationary phase (>>resistive diffusion time)

High Bootstrap Fraction (>90%) Now Achieved at Relevant q₉₅

Stellarator scenario development also utilizing shape and pressure profile control for optimized performance

ITER Startup Scenario Improved Through Extensive Collaborative Experiments and Modeling

ASDEX-Upgrade

- EC burnthrough assist at low voltage shown on 5 tokamaks
- Large-bore limiter followed by early X-point formation needed for compatibility with ITER coil set and first wall (AUG, DIII-D, JET, C-Mod)
- Hybrid performance demonstrated with new ITER startup (DIII-D)

Long Pulse Capability Facilitates Addressing the Integration of Burning Plasmas with Boundary Solutions

T_{e0} (keV)

n_{e0} (10¹⁹ m⁻³)

I_p (MA)

time (s)

50

P_{LH} (MW)

100

TORE SUPRA

New superconducting divertor tokamaks will advance steady state physics

Divertor radiation enhanced by Ne puff in Ar seeding type-I ELMy H plasma with higher $H_{H} = 0.95-0.8$

Ar and Ne seeding in ELMy H-mode plasma with ITB

Good confinement $(H_{89L}=1.73-1.5, H_{H98y2}=0.95-0.8)$ type-I H-mode with large radiation fraction(P_{rad}^{tot}/P_{abs} =0.8-0.9) was sustained.

JT-60U

 Experiments combining ELM suppression with advanced performance scenarios have started in DIII-D

Good Performance Obtained with Tungsten Walls When Combined with Radiative Divertor Operation

AUG 1.3^{-1} $P_{ECRH} = 1.5MW$ $P_{tot} = 9-12 \text{ MW}$ 1.2-Л₉₈ δ~**0.32-0.35** 1.0-∩ Q- >7 days after bor. 2002-2006 0-7 days after bor. w/o bor in all-W 2008 8 12 10 bor. + N_2 seeding Gas fuelling [10²¹/s] year.

Nitrogen seeding in boronized full W:

- N₂ seeding controlled by T_{div}
- reduced N "sticking" on W surfaces
 - \rightarrow N content under control
 - → low T_{div}, frequent small ELM's, reduced heat flux to divertor
 - → high W_{mhd} , high H_{98} ≤1.25

Good perspectives for operation at higher triangularities next year.

Confinement Experiments Are Addressing Key Issues for Burning Plasma and Fundamental Plasma Physics

Four broad research areas are addressed:

- Particle transport
 - Peaking at low collisionality would improve fusion yield in ITER
- Plasma rotation
 - Critical issue for confinement and stability
- Energy transport
 - Experiments addressing both projection and basic plasma physics of turbulence
- Pedestal and L-H transition
 - Progress in prediction of pedestal height key for performance projections

Progress Reported on Understanding of Particle Transport

- Results from JET extend work recognized by 2007 Nuclear Fusion prize toward ITER collisionality
- Linear growth rate simulations show good agreement for the dependence of density peaking with collisionality
- Implies ITER could have more peaked density profiles than previously assumed

From Toroidal Chambers (Geneva, 1958) to ITER (Geneva, 2008) - K. A. Razumova

Progress in Understanding Particle Transport Benefits from Stellarator-Tokamak Comparison

Density transport varies by configuration:

• JT-60U has large outward diffusion compensated by large inward pinch

•LHD has small outward diffusion with almost no pinch

•LHD also sees that collisionality dependence varies with the magnetic configuration

Spontaneous toroidal flow is observed in stellarators

 Spontaneous toroidal velocity proportional to grad(Ti)

Continuing work on spontaneous (intrinsic) rotation

- C-Mod → 100 km/s in ITER
- JT-60U
- JET
- DIII-D
- TCV
- LHD

Recent Results Show Direct Flow Drive in ICRF Mode-Conversion Experiments

- Active ICRF Flow Drive
 - At least a factor of 2 above the usual scaling seen with pressure/current
- Use multi-frequency capability
 - 80 MHz, proton minority
 - 50 MHz, ³He mode conversion
 - Both layers near the axis
- Near-axis conversion to lon Cyclotron Wave (ICW)
 - propagates back toward low field side
 - damps and drives flow at ³He cyclotron layer

Mode Conversion Flow Drive

 $B(R_0) = 5.1$ Tesla; ³He fraction ~ 10%

Yijun Lin, Post-Deadline

Effects of LH Counter- and Intrinsic Co-Flows are additive: Flow profile control

LHCD counter-current rotation added to intrinsic co-current
 – Hollow rotation profile with strong shear

n=3 Non-Resonant Magnetic Fields (NRMF) Applied to Slowly Rotating Plasma Leads to Rotation Spin Up

- NBI power and torque constant during time range shown
- Rotation acceleration happens at all minor radii
- Simultaneous improvement in energy confinement
- Evidence for theoretically predicted offset rotation
 - NSTX has also reported NTV damping

Characteristics of the momentum transport and the intrinsic rotation

EX/3-1, M. Yoshida

Existence of a Momentum Pinch Observed on Multiple Devices

Predictions for rotation in ITER are emerging

Tuomas Tala15/16IAEA Fusion Energy Conference 2008, Geneva

15 October 2008

Momentum transport from MHD tearing instability in the MST reversed field pinch.

- Momentum profile quickly flattens at the sawtooth crash
- Transport much faster than classical diffusion

EX/P5-3

Thermal diffusivities down to ion neoclassical level at ITBs

- Strong ITBs for T_i, T_e and n_e profiles were formed around ρ_{qmin} (q_{min} ~ 2.3).
- Thermal diffusivities were reduced to ion neoclassical level at ITBs.
- High Confinement (HH_{y2} ~ 1.7)
- High density (n_e/n_{GW} ~0.9)
- Reactor relevant condition

 T_e ~ T_i
 Low momentum input (BAL injection)

Ion neoclassical transport with ITB on LHD

Improvement of ion heat transport realized by upgrade of ion heating power

T_i (0) reaches 6.8 keV at $\overline{n}_e = 2 \times 10^{19} \text{m}^{-3}$

 \checkmark T_i Profile exhibits a steep gradient in the core similar to an ITB

→ EX/8-2Ra by Nagaoka

First evidence of internal transport barrier in HSX

- Shearing rate greater than maximum linear growth rate inside r/a ~ 0.3
- α_E = 0.3 gives good agreement with temperature at core

Improved confinement up to a factor 2 in Single Helical Axis (SHAx) states: inside the helical structure electron temperature exceeds 1 keV with steep gradients which identify an internal transport barrier $(1/L_{Te} \text{ of the order of } 20 \text{ m}^{-1})$.

The heat conductivity improvement during a SHAx can be more than one order of magnitude and involves about one half of minor radius.

Figure: Measured electron temperature and calculated χ_e profiles during Multiple Helicity and SHAx states in the same RFX-mod discharge.

Stronger B_t and weaker I_p scaling of τ_E than IPB98(y,2)

EFTER Toroidal field ripple studies in JET

First experimental verification of ITG threshold

Dependence of transport on collisionality and triangularity indicative of TEM transport

- χ_e decreases for increasing ν_{eff} and for decreasing δ
 - L-mode, large T_e gradient: R/L_{Te}>10
- Trend confirmed by nonlinear local gyro-kinetic simulations of trapped electron mode (TEM)

A. Fasoli et al., IAEA 2006 OV/3-3

A. Pochelon et al., EX/P5-15

Electron-scale turbulence observed consistent with GS2 predictions

- High-k ETG-scale spectrum on NSTX increases as T_e profile peaks (Mazzucato EX/10-2Ra)
 - t_1 with and t_2 without HHFW heating $\int_{\frac{1}{2}}^{\frac{3}{2}} \int_{\frac{1}{2}}^{\frac{3}{2}} \int_{\frac{1}{2}}^{\frac{3}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}}$

Radial location of turbulence measurement

 $\omega/2\pi$ (MHz)

 FT-2 spectra consistent with GS2 DTEM and ETG predictions (Gusakov, EX/10-2Rb)

Zonal Flows and Geodesic Acoustic Modes (GAM) Characteristics measured on multiple devices

- T-10, GAM disappears with increasing density (Melnikov, EX/ P5-36, Shelukhin EX/P5-37)
- HL-2A, Low-frequency zonal flow, GAM and 3-wave coupling to turbulence observed (Liu, EX/ P5-32)
- AUG, amplitude scaling of GAM is linear with gradient drive (Conway, EX/P5-38)

Strong Zonal Flows Reduce Intermediate-scale Density Fluctuations

- Low frequency flow fluctuations
 v: 0.2-3 kHz
- High frequency density fluctuation amplitude A_n: 7.5-75 kHz (Schmitz EX/P5-35)

Strong <u>anticorrelation</u> between flow and density fluctuation envelope in L-mode core plasma

Quantitative comparisons of multi-field measurements to simulations provide stringent test of models

- Simultaneous measurements of density (BES) and temperature (CECE) fluctuations
- Synthetic diagnostics applied to simulation data
- GYRO reproduces both mode spectra and amplitudes, density better than temperature. (Holland TH/8-1)

Power threshold for Deuterium and Helium-4 are similar and 2 times lower than Hydrogen

- P_{th} increases with torque in both H and D
- P_{th} minimum similar for ⁴He and D

Pedestal Width Scaling with Pedestal Poloidal Beta Observed in Several Devices

- Pedestal Pressure width $\Delta_p(\psi) \propto \sqrt{\beta_{p,pol}}$
- Relative width, ∆/a similar across devices

Pedestal width from mass scaling experiments exhibit $(\beta_{\theta,ped})^{1/2}$ and very weak $\rho_{i,\theta}$ dependence

- JT-60U: Pedestal width (T_i) in H/D experiment scales with $(\beta_{\theta,ped})^{1/2}$, $(\rho_{i,\theta})^{0.2}$
- DIII-D: Pedestal width (total pressure) in H/D exhibits dependence on β_{θ,ped} but not on ρ_{i,θ}

Pedestal Width Scaling Combined with Stability Offers Pedestal Height Prediction

 Initial prediction for ITER: T_{ped} ~4.6 keV (favorable for Q=10)

Summary 1: Innovative Concepts Research is Focused on Novel Solutions to Fusion Challenges

Levitated Dipole: first full levitation

- Increased density, increased beta
- Progress in sustaining field reversed configurations
 - FRC -- sustained 10 ms
 - Spheromak -- 34 kA
- New Divertor Configurations have the potential to reduce peak heat flux

Summary 2: Scenario Research Has Increased Confidence in ITER's Success, but Work Still Remains

- Several experiments have demonstrated operational scenarios that exceed the requirements of ITER
- Performance benefits from conditions not expected in ITER (e.g., low density, T_i > T_e, and high toroidal rotation). More work is required to determine acceptability in ITER-like conditions.
- Potential of steady-state operation is being realized
 - Fully non-inductive and 100% bootstrap operation demonstrated
 - Continued improvement in performance achieved through optimization with respect to plasma shape, pressure profile, and current profile
- Integration of high performance core with boundary solution remains a significant challenge
 - Performance with metal walls looks promising, but more work to be done
 - ELM suppression achieved but core performance impacted
 - Significant issues with localized heat/particle handling in long pulse discharges

Summary 3: Continued Research in Transport Provides the Basis for Developing Predictive Models

- Progress in experimental validation of theory-based models for particle transport
- New sources of torque are clearly identified: Intrinsic (∇T_i), Mode conversion current drive, lower hybrid, and non resonant magnetic perturbations
 - Useful for increasing ITER's rotation
- Inward momentum pinch identified on many experiments
 - Potentially increasing rotation in ITER
- Toroidal field ripple decreases the energy confinement
- Internal transport barriers are observed on stellarators and RFPs
- Clear evidence of critical temperature gradient is demonstrated
 - Reduced stiffness and rotation increases
- Evidence of zonal flows reducing turbulence
- Pedestal scaling with $\beta_P^{\frac{1}{2}}$ is favorable for ITER

50 Years of Fusion Energy Research

- 1958 : The world shared its vision of fusion energy
- 2008: The world has committed to share the realization of fusion energy
- The need for fusion energy is greater than when we started our journey together

Progress demonstrated at this 22nd IAEA Fusion Energy Conference shows we can move forward – with high and increasing confidence