## Time-Dependent Integrated Modeling of Burning Plasmas

R. Budny, R. Andre, and C. Kessel (PPPL)

IAEA meeting W60 for Burning Plasma Physics, Tarragona, Spain, July, 2005

- Need better understanding of burning plasmas to increase the chances of practical fusion power
- Time-dependent integrated modeling will help meet this goal
  - 1. Check the ITER design (ex,  $P_{aux}$  sufficient? rotation sufficient? ash removal sufficient? will the diagnostics work?)
  - 2. Provide quality data for theoretical studies (ex, TAE)
  - 3. Will need to certify each plasma before it is tried



Overview of this Talk

- We used a prototype of PTRANSP to generate ITER shots
- Examples of uses of the modeling
  - 1. distributions of the fast alpha and NNBI ions
  - 2. estimates of toroidal rotation and  $E_r$  profiles
  - 3. gyrokinetic simulations of energy, momentum, and particle flows
  - 4. estimates of alpha ash profile



Prototype Integrated Modeling using the TSC and TRANSP codes





## **ITER Plasmas studied**

- Steady-State plasma: low current, fully non-inductive
- Day-one hybrid plasma: q(0)  $\simeq$ 1.0-2.0, low  $\beta_n$  (2.1)
- Sawtoothing ELMy H-mode

|              | $I_p$ | Iboot | Innbi | $I_{Oh}/I_p$ | $n_{e}(0)$      | $f_{GW}$ | $T_e(0)$ | $P_{DT}$ | $\boldsymbol{\beta}_{\boldsymbol{\alpha}}(0)$ |
|--------------|-------|-------|-------|--------------|-----------------|----------|----------|----------|-----------------------------------------------|
| units        | MA    | MA    | MA    |              | $10^{20}/m^{3}$ |          | keV      | MW       | per cent                                      |
| Steady-State | 9     | 4.3   | 4.3   | 0.0          | 0.6             | 0.63     | 33       | 305      | 1.3                                           |
| Hybrid       | 12    | 2.8   | 2.4   | 0.50         | 0.8             | 0.64     | 24       | 333      | 1.0                                           |
| ELMy         | 15    | 2.7   | 1.1   | 0.70         | 1.1             | 0.80     | 22       | 403      | 0.6                                           |



# **Examples of Findings**

- High pedestal temperatures appears required by GLF23 (in TSC) to achieve P $_{DT} \simeq$  400MW with the planned ITER auxiliary heating
- Good NNBI penetration and current drive
- ullet Modest toroidal rotation from NNBI torques if  $\chi_{mom}pprox\chi_i$
- Intense TAE activity predicted



## Construction of the Hybrid plasma

- Use GLF23 model to predict temperatures
- High pedestal temperatures to achieve  $P_{DT} \simeq 400 \text{ MW}$
- Reduced  $I_p$  (12 MA) to decrease inductive-current fraction
- Moderate density for good NNBI penetration
- Suffi cient current drive to keep q(0) above unity







# Sustained $q_{MHD} > 1$ with evolving reversal in Hybrid plasma



PRINCETON PLASMA Physics Laboratory

# Example of benign ash accumulation in the Hybrid plasma



He ash accumulation in ITER Hybrid plasma



# TRANSP Diagnostics verify NNBI aiming





# TRANSP calculates consequences of vertical swing of NNBI



#### Effects of changing NNBI aiming



## Core beam parameters affected by NNBI aiming





## TRANSP computes distributions of fast ions



13

## Estimate modest toroidal rotation in the Hybrid plasma





## Compare $E_r$ in JET DT ELMy and ITER Hybrid plasma

## • $E_r$ predicted for ITER Hybrid less than JET ELMy by factor of 3

ullet  $E_r$  dominated by  $v_{tor}$  term





# Is ITER heating suffi cient to maintain turbulent flows?



Ion + electron conducted + convected energy flow



## Nonlinear GYRO simulations of heat flow in JET and ITER

### • Agreement for the JET DT ELMy H-mode

• Factor of 3 too high for ITER Hybrid

GYRO simulation of energy flow in a) JET DT plasma b) ITER Hybrid plasma



## Discussion of gyrokinetic simulations

- Want to close the loop: GYRO  $\Rightarrow$  GLF23  $\Rightarrow$  TSC  $\Rightarrow$  TRANSP  $\Rightarrow$  GYRO
- My EPS discussed nonlinear simulations of JET and DIII-D ELMy plasmas
  - 1. Energy, momentum, and electron species fbws depend sensitively on  $abla(T_i)$  and  $abla(E_r)$
  - 2. Slight changes get approximate agreement for energy fbw in 3 out of 4 plasmas studied
- Also find strong sensitivity to  $oldsymbol{
  abla}(T_i)$  in ITER
- ullet For ITER Hybrid get  $\Gamma_E$  higher than TRANSP result by imes 3 for  $r/a \simeq 0.7 0.8$
- ullet Find turbulence suppressed for  $r/a \leq 0.6$
- Plan to explore sensitivity to  $\gamma_{E imes B}$
- Plan GYRO runs with more than 2 ion species to explore D, T, and impurity transport



## Plans for Integrated Modeling using PTRANSP

- New PPPL Lehigh GA LNL Collaboration
- Planned near-term upgrades to PTRANSP
  - 1. Ability to stop, steer, and restart
  - 2. Free boundary adjusted by varying coil currents
  - 3. Improved temperature predictive capabilities
  - 4. Improved Verifi cation and Validation
- Planned long-term upgrades to PTRANSP
  - 1. Scrape-off model
  - 2. density prediction



- The TSC-TRANSP codes have been used to prototype time-dependent integrated modeling of burning plasmas
  - 1. Steady-State, Hybrid, and ELMy H-mode ITER plasmas
- ullet moderate toroidal rotation estimated from NNBI if  $\chi_{\phi}\simeq\chi_{i}$
- LHCD effective at altering q around x=0.8
- TAE activity is predicted for ITER
- High pedestal temperatures required by the GLF model in TSC
- ash accumulation modeled for various transport assumptions
- sawtooth mixing of fast alphas, beam ions, and ash predicted for ELHy H-mode
- Upgrade (PTRANSP) in progress
- Nonlinear GYRO runs simulated energy, momentum, and electron fbw in ITER



- Continued PTRANSP collaboration important for integration of more physics
- Submit more ITER plasmas to ITPA profi le database
- Gyrokinetic studies
- TAE studies
- MHD studies
- Improved RF modeling

