Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices

Arnold H. Kritz, T. Onjun, C. Nguyen, P. Zhu, G. Bateman

Lehigh University Physics Department 16 Memorial Drive East, Bethlehem, PA 18015

> Burning Plasma Science Workshop Austin, TX December 2000

Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices

- Integrated transport modeling simulations carried out
 - using theory-based Multi-Mode and empirical Mixed-Bohm/gyro-Bohm transport models
 - BALDUR predictive transport code
 - simulating several high-field tokamak reactor designs with scans over parameter ranges
- Transport models with very different gyro-radius scaling match experimental data equally well
 - hence, burning plasma experiment is needed to test validity of core transport models
 - also needed to test bounday condition models
 e.g., models for the height of H-mode pedestal

Baseline Design Parameters

Simulations have been carried out for three high-field tokamak reactor designs: Ignitor, Mazzucator, and FIRE.

Physical Quantity	Symbol	Unit	Ignitor	Mazzucato	FIRE
Major Radius	R	m	1.33	3.92	2.00
Minor Radius	a	m	0.455	1.12	0.525
Elongation	κ		1.80	1.75	1.80
Triangularity	δ		0.40	0.40	0.40
Toroidal Magnetic Field	B_t	Tesla	13	8	10
Plasma Current	I_p	$\mathbf{M}\mathbf{A}$	12	12	6.5
Vol. avg. electron density	$< n_e >$	$10^{20} { m m}^{-3}$	4.7	2.0	4.5
Auxiliary Heating	P_{aux}	$\mathbf{M}\mathbf{W}$	10	30	22
Alpha Power	P_{α}	$\mathbf{M}\mathbf{W}$	14.1	49.1	12.3
Ohmic Power	P_{Ω}	$\mathbf{M}\mathbf{W}$	5.9	2.3	2.0
Fusion Gain	Q_{fusion}		4.5	7.6	2.6
Diagnostic Time	$t_{\rm diag}$	sec	7	20	20

Comparison Between Transport Models

- 13 L-mode TFTR and DIII-D

• Can predict different performance FIRE Mazz. Ignitor

			Ignitor
Model	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}
MB/gB	2.7	3.2	2.1
$\mathbf{MMM95}$	2.6	7.6	4.5

Average normalized RMS deviations compared using MMM95 and MB/gB models for 22 Hmode discharges in JET and DIII-D.

December 2000

Comparing MMM95 and MB/gB Models

Comparing MMM95 and MB/gB Models

Systematic Scans of Fusion Reactor Simulations

- Increasing plasma current and toroidal magnetic field has the biggest effect on performance
 - Magnetic q held fixed
- Increasing edge temperature (at top of H-mode pedestal) increases performance
 - Stiff transport models are sensitive to edge temperature
 - Developing a model for H-mode pedestal
- Increasing plasma density reduces plasma temperature
 - Net increase in performance up to nearly the Greenwald limit
- Impurity content
 - Increasing Z_{eff} degrades performance
- Pellet injection
 - Can improve performance

Kritz

Burning Plasma Workshop

December 2000

BALDUR Simulations using the MMM95 Model

Ignitor Current Scan

Model Being Developed for Height of Pedestal at the Edge of H-mode Plasmas

T. Onjun, G. Hammett, A.H. Kritz, and G. Bateman

• Predictive boundary conditions needed for simulations

- Plasma boundary consists of scrape-off-layer and pedestal

- Pedestal temperature decreases with increasing density relative to Greenwald density
 - Reduced pedestal temperature also reduces core temperature predicted by stiff transport models
 - This effect partly offsets increase of fusion power with density
- Increasing plasma current increases Greenwald density
 - Allows higher plasma density for same pedestal temperature which further increases plasma performance

Comparing the way of turning off heating power

Mazzucato baseline design

Physics Issues in Reactor Simulations

- Different transport models extrapolate in different ways to fusion reactors
 - Several different models match experimental data equally well
 - Issues of stiffness and scaling
- Sawtooth oscillations can be very broad
 - $-r_{\rm mix}/a \ge 0.6$ observed in simulations
 - Can be reduced by using current drive or current ramping
 - Might have a big impact on fast alpha particles
- Fusion power depends on time history of auxiliary power
 - Rapidly turning off auxiliary heating power produces a rapid decay of alpha heating power $P_{\alpha}(t)$
 - Slow reduction in auxiliary power yields slow $P_{\alpha}(t)$ decay