US ITER Project

Providing a Facility for Burning Plasma Research

Working with the US community to position the US for Burning Plasma Research

Ned Sauthoff Project Manager, US ITER Project

> APS/DPP meeting Philadelphia, PA October 31, 2006

2006 U.S. "in-kind contribution" hardware scopes

Major Areas of Cost

US Magnet Scope

Toroidal Field (TF) Coils Central Solenoid (CS) Cable Configuration Cable Cross-Section Six of the seven participant teams will provide TF conductor. The US team will fabricate nearly 8 km of TF conductor, including active, dummy, and test samples for qualification. 4 (Core The U.S. Team will use CS conductor provided by the Japanese Team Central Spiral (30% Surface Void) Centr Cooling Ci

U.S.

US contributes about 8% of TF conductor

- 9 "long" double-pancake lengths (about 765 m each) + 1 dummy length
- Nearly 7 km of "active" CICC
- Nearly 38 t of Nb₃Sn wire

Central Solenoid

CS Coil Modules

- 6 modules + 1 spare
- All identical
- In-line conductor butt joints between sections

- CS structure positions the assembly and provides axial pre-compression of modules
- Mounts off the TF cases

Scope – CS External Piping, Extensions & Joints

Power-handling

In-vessel structures

Scope – Blanket Module

Module Allocation

1

Port Limiter

Plasma Facing Head Orientation

Plasma control, heating, current drive

ICH system

The ITER ICH system will deliver 20 MW of power to the plasma for ion heating and for central current drive It is: It can be used for:

- One antenna, 8 or 24 current straps
- Eight rf sources, each feeding one set of straps in the antenna
- 40-55 MHz frequency range
- Adjustable phasing between straps for heating or current drive

- Tritium ion heating during DT ops
- Minority ion heating with initial H/D ops
- Central current drive for AT ops
- Minority ion current drive at sawtooth inversion radius

ITER ion cyclotron system block diagram

Issue: Matching system depends on antennation us impacts component, quantity details and risk and risk

8 Feed lines of 2.5 MW ea. into VSWR \leq 2.0.

Antenna is load-tolerant with internal matching components (sliding stub-tuned triax).

Risk: 5MW section connects combiner and splitter. 2.5 MW center conductor cooling required. Antenna performance and reliability is now deemed inadequate

Internal-match design - load-tolerant antenna

12 Feed lines of 1.7 MW ea. into VSWR \leq 1.6.

Antenna is load-tolerant with internal matching components. Pre-match keeps VSWR ≤ 1.6.

Hybrid not used since it is incompatible with phasing requirements.

Internal tuning similar to JET-EP and Tore Supra load tolerant antennas.

Risk: 12 feed lines increase transmission line & matching cost. Smaller lines still need inner cooling (1.7 MW).

Issue: Matching system depends on antenna impacts component, quantity details and risk and ri

8 Feed lines of 2.5 MW ea. into VSWR \leq 1.3.

Antenna not load-tolerant, simple design with no moving parts. Pre-match keeps VSWR ≤ 1.6.

Reflected power (plasma load variations) absorbed in dump resistors, not available for plasma heating.

Rearrangement of baseline components with minor changes

Risk: Some loss of power/performance during ELMs. Lowest risk option for transmission line and matching

4 Feed lines of 5 MW ea. into VSWR ≤ 1.6.

Antenna load tolerant with no moving parts, but requires significant external components near antenna. Pre-match keeps VSWR \leq 1.6. May need additional tuning components near antenna.

Fie-match keeps $VSWR \ge 1.0$. May need additional turning components in

Tuning architecture to be tested on JET A2 antenna

Risk: Extended length of high power line (5 MW). More matching components required.

ECH&CD Transmission Lines

Diagnostic instrumentation

Instrumentation is key to science on ITER

A Significant (16%) Diagnostic Role in ITER Supports a Strong Research Presence

Seven Diagnostic Systems

- Motional Stark effect polarimeter
- 6 visible/IR cameras in upper ports
- Low-field-side reflectometer
- Electron cyclotron emission
- Tangential interferometer/polarimeter
- Divertor interferometer
- Residual gas analyzer

Five Diagnostic Port Plug Structures

- 2 upper plugs
- 2 equatorial plugs
- 1 lower plug structure

Instrumentation Example Reflectometer

 Designed to measure density profiles with high time resolution and density fluctuations.

- Instrumentation packages consist of
 - Front-end components embedded in port plug
 - mirrors, waveguides/horns, shutters, calibration sources
 - Ex-cryostat components some of which are far removed
 - fiber optics, transmission lines, sources, detectors

Scope - US Port Plugs

Upper Plugs (U5, U17) (4.5m long, ~25T in-vessel)

Equatorial Plugs (E3, E9) (2.2m high, ~50T in-vessel)

DIAGNOSTIC SIDE PLATE DIAGNOSTIC OPTICAL MODULE LOCATIONS CASSETTE BOD ARGETS & DOME DIAGNOST SIDE PLATE RUMENTATION SERVICE CONNECTOR CABLING DIAGNOSTIC WAVEGUIDE CONNECTOR **Divertor Side Panels** and Back Boxes (L8)

Plugs provide

- Vacuum seal, radiation shielding
- Cooling water and support for blanket shield modules
- Support and access for diagnostics

- Diagnostics from other parties need to be integrated into plug E3
 - 2 visible/IR camera views (EU)
 - 2 edge CXRS views (RF)
 - 2 H_{α} arrays (RF)
 - X-ray crystal views (IN?)
- The division of integration design responsibility between the IT and the parties has not been fully negotiated.

Preparations Leading to Major Diagnostic Design Effort for US Diagnostic Systems

- Over the next 6-9 months, USIPO will be assisting the ITER Organization to prepare procurement documents to more clearly define the US diagnostic scope.
 - First award for major design of a US system presently scheduled for early FY08.
- A number of "assessment studies" were recently launched to re-engage US diagnostic experts.
 - Resulting performance assessments and revised cost estimates will help guide procurement arrangements.
- Core engineering team will assist US diagnostic designers to integrate instrument front-ends into the plugs.

Ongoing Studies Assess Reference Designs for US Systems

Diagnostic Package	Task Summary	Institution(s)
Upper Visible/IR Camera	assess optical design, central tube concept	LLNL
LFS Reflectometer	determine optimum frequency bands and polarizations	UCLA
MSE	assess usefulness of B determination	NOVA
MSE	performance simulation of conventional polarimetry approach	PPPL
MSE	optimization of optical design	LLNL
ECE	investigate non-thermal issues, use of oblique view	PPPL
ECE	review reference design	U. Texas-U. Md-MIT
Divertor Interferometer	develop conceptual design	GA-UCLA
RGA	develop conceptual design	ORNL
Tang. Interfer./Polarimeter	optimize reference design	UCLA-GA
First Mirror R&D	model erosion/deposition on 1st mirrors	ANL
Neutronics Analysis	benchmark neutronics models for plug integration using ATILLA	UCLA-PPPL

- Focus on identification of 'front-end' configurations
- Upcoming meetings provide opportunity for broader input
 - USBPO Workshop 6 8 February 2007 at General Atomics.
 - ITPA Diagnostics TG Meeting 26 30 March 2007 at PPPL.

Fuelling and exhaust processing

ITER Pumping and Fueling Systems

TORUS HALL TRITIUM Bioshield Cryostat Gas Injection System (Vert. Port) Fuel Storage System Fusion Power Shutdown Tritium Plant System NBI and Diagnostic NBI 0 Gas Injection Torus System Roughing (Div. Port) Pump Pellet Cryopump Injection System In-Vessel GDC Wall Conditioning Electrodes System (GDC, ECRDC, ICRDC)

ITER Roughing Pump Sets

Roughing pump sets - 4 identical pump assemblies
Piston pumps, Blowers, mounted in glove box assembly with associated valves, instrumentation and controls

Roughing Pump Set Assembly Change Over Valve Box Assembly

ITER Vacuum Standard Components U.S.

- Standard components consists of
 - ICRF vacuum system 64 getter pumps and 32 valves
 - ECH vacuum system 130 sputter ion pumps, 10 TMPs, 10 dry pumps & 220 valves
 - Guard and service vacuum system 86 cryo pumps, 2 dry pumps and 1738 valves

Pellet Injector

- Pellet injection the only known method to achieve efficient core T₂ fueling
 - Pellets ~90% efficient
 - gas puffing < 1% efficient</p>
 - NBI fueling negligible
- Guide tubes bring the pellets through the divertor ports to the inner wall.

Pellet Injector Design

D2 (RPI)

Hydrogen, Deuterium and Tritium Pellets

H₂ (RPI) T2 (TPOP)

Two concepts are available for ITER pellet acceleration

- ITER baseline design assumes a centrifuge accelerator
 - Low (~10%) recirculating gas from accelerator
 - Existing designs do not meet the needed reliability
 - Significant development needed to meet the ITER reliability requirements
- Gas gun technology may be a better choice
 - High reliability has been demonstrated for slow pellets
 - Propellant gas valve can be optimized for low gas usage
 - A recirculating propellant gas system can be employed to minimize impact on the tritium plant

Recirculating Propellant Gas

ITER Gas Gun Pellet Injection System Conceptual Design

Cask layout from P. Fogarty, ORNL

Tritium Processing System

1

Tritium Plant

Steps of the Tokamak Exhaust Processing

- Battery of front-end permeators (first process step)
- Cracking or conversion reactions (impurity processing, second process step)
- Counter current isotopic swamping (final clean-up, third process step)

Tritium-breeding: Test Blanket Modules (Outside the ITER Construction Project and US ITER Project)

Dual Coolant Lead- Lithium TBM

Schematic view of solid breeder thermomechanics unit cell test articles housed inside helium-cooled pebble bed box

Cooling Water

Seven sub-systems distributed throughout Tokamak building

Steady-state Electric Power

ITER AC Power Systems: Generic Site

Pulsed Power Electric Network

Steady State Electric Power Network

Highest Level Management Structure

The US ITER Project Office (US IPO) is established

The US IPO management team has been fully staffed, with all seven WBS Managers now on board"

Support of the International Team

- Cash, as part of "Staff and Infrastructure"
- Domestic Staff support of the IT
 - Design and facilitation of systems with US-scope
 - Project management expert support
- Candidates to fill "Urgent Positions"

IT-selected US Secondee Candidates and Visiting Researchers

DDG/Tokamak: **Buildings: Diagnostics/in-vessel [VR]: Fusion Nuclear Safety:** IC H&CD [VR]: IC H&CD: Magnets [VR]: Magnets: **Planning:** QA: Site & Facility: Vacuum Vessel:

Gary Johnson (ORNL) Jerry Sovka (ATI) **Doug Loesser (PPPL) Dennis Baker (SRNL) Richard Goulding (ORNL) Joe Tooker (General Atomics)** Nicolai Martovetsky (LLNL) **Remy Gallix (General Atomics)** Larry Lew (High Bridge) Ken Sowder (INL) Paul Holik (ORNL) **Chang Jun (PPPL)**

Future IT/IO staff selections

• Now posted in the US:

- Diagnostics Engineer
- Diagnostic Physicist
- Superconductor Engineer
- Coil Designer

• Expected soon:

 ~50 additional positions in physics, technical, administrative, and project management areas

International Design Review

- To enable US domestic project progress, the US seeks a revised baseline for the US scope by Summer 2007
- Schedule for the Design Review
 - Now: Preparation, submission and prioritization of "issues;" development of design approaches/solutions
 - Winter 2006/7: International Team Design Review meeting
 - Winter/Spring 2007: International Team, Working Groups and Participant Teams update the design and schedule
 - Spring/Summer 2007: revised Design Baseline
 - ??? 2007: Council-approved Design Baseline

US ITER Preliminary Schedule

US ITER Budget Request (\$M), summing to \$1.122B

Major Risks and Issues

- Uncertainties about International "need dates" for US components
- Uncertainties about contents and availabilities of Internationallyprovided component specifications and requirements
 - Design Baseline
 - Procurement Agreements (technical and management aspects for US procurements)
 - Codes, standards, and Host regulations
- Uncertainties about drivers of US cost linked to other parties
 - Sub-components from other parties
 - Responsibilities for costs related to regulatory requirements imposed by the Host

Summary assessment and path forward

- A strong international ITER Organization is key to ITER success
 - the central ITER team is growing in strength, improving its ability to perform necessary system integration and project leadership
- The US Domestic Agency senior management is assembled, is building it team and tools, and is developing its FY2007 Work Plans
- US Near-term Activities focus on:
 - Completing R&D, design, and re-baselining of the US scope
 - Positioning for updated scope, and firmer cost and schedule estimates by the end of 2007
 - Supporting the International Team with secondees, on-site experts, and domestic work
 - Enabling the US scientific and technology communities to participate in the upcoming ITER Design Review to make ITER as good a research tool as it can be....

