

Toroidal Magnetic Plasma Confinement at the Limit: the National Spherical Torus Experiment

M.G. Bell Princeton Plasma Physics Laboratory for the NSTX Research Team APS April Meeting 2003

"Spherical Torus" Extends Tokamak to Extreme Toroidicity

• Motivated by potential for increased β (Peng & Strickler, 1980s)

 β_{max} (= $2\mu_0 \langle p \rangle / B_T^2$) = $C \cdot I_p / aB_T \propto C \cdot \kappa / Aq$

- B_T : toroidal magnetic field on axis;
- $\langle p \rangle$: average plasma pressure;
- I_p: plasma current;
- a: minor radius;
- κ : elongation of cross-section;
- A: aspect ratio (= R/a);
- q: MHD "safety factor" (> 2)
- C: Coefficient ~3%·m·T/MA (*Troyon, Sykes - early 1980s*)
- Born out by experiments
 - $\beta_{max} \approx 40\%$ (START UK, 1990s)

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Experiments started in Sep. 99

Aspect ratio A	1.27
Elongation k	2.5
Triangularity δ	0.8
Major radius R ₀	0.85m
Plasma Current I _p	1.5MA
Toroidal Field B _{T0}	0.6T
Pulse Length	1s
Auxiliary heating:	
NBI (100kV)	7 MW
RF (30MHz)	6 MW
Central temperature	1 – 3 keV

NSTX Has Achieved Good Progress in β_T

- $\beta_T = 35\%$ determined by magnetic analysis
- $B_T = 0.3T$, A = 1.4, $\kappa = 2.0$, $\delta = 0.8$
- High confinement (H) mode (*c.f.* standard tokamaks) broadens pressure profile

APS April Meeting 2003 / MGB

2

R [m]

-2

D. Gates

In Addition to High β, New Physics Regimes Are Expected at Low Aspect Ratio

- Intrinsic cross-section shaping $(B_P/B_T \sim 1)$
- Large gyro-radius (a/ ρ_i ~ 30–50)
- Large fraction of trapped particles ($\sim \sqrt{(r/R)}$)
- Large bootstrap current (up to 70% of total)
- Large plasma flow & flow shear (M ~ 0.5)
- Supra-Alfvénic fast ions (v_{NBI}/v_{Alfvén} ~4)
- High dielectric constant ($\varepsilon \sim 30-100$)

With NBI Heating, Ions Are Well Confined & Global Confinement Exceeds Predictions

- T_i > T_e although for NBI P_{b,i}/P_{b,e}≈ 0.7
- Both thermal and *fast* ions are well confined

- Confirmed by analysis based on profiles of T_i, T_e, n_e
- Both L & H -mode plasmas exceed ITER-97L scaling

B. LeBlanc, R. Bell, S. Kaye

Exploring Additional Methods for Generating and Sustaining Toroidal Plasma Current

- STs need non-inductive current
 - space for transformer solenoid in center is very limited
- Exploit the neoclassical "bootstrap" current at high β
 - effect of toroidicity in a collisionless plasma
- RF waves at high harmonics of the ion cyclotron frequency can heat and drive current

- details in talk C10.003 by C. Phillips

- Coaxial Helicity Injection (CHI) can initiate toroidal plasma current
 - Create linked toroidal and poloidal magnetic flux (helicity) by injecting poloidal current which relaxes to form closed magnetic surfaces
 - Demonstrated on the HIT-II experiment at U. of Washington, Seattle

Neoclassical Bootstrap Effect Drives Substantial Fraction of Plasma Current

NSTX Explores Plasma Confinement in a Unique Toroidal Configuration

- Potential for high β already demonstrated
- Confinement with NBI heating exceeds expectations
 - lons are well confined
 - Combined NBI-driven and bootstrap current up to 60% of total
- Challenge is to achieve favorable characteristics simultaneously with non-inductive current drive
 - Self-consistent bootstrap current
 - Current sustainment by RF waves
 - Current initiation by coaxial helicity injection

NSTX -

CHI Has Generated Significant Toroidal Current Without Transformer Induction

 Goal to control discharge evolution to promote reconnection of toroidal current onto closed flux surfaces