Particle and thermal transport in the NSTX spherical torus

D. Stutman Johns Hopkins University for the NSTX Team

APS 2003 April Meeting

Transport in NSTX versus conventional tokamak

- Microstability (ions) predicted to improve in NSTX (R/a, ω_{ExB} , β)
- Improvement needed because of large ρ_L/a ($D_{ion}^{turb} \approx tens of m^2/s$)
- Good global confinement observed ($\tau_{\rm E} \leq 0.12$ s in NBI discharges)

Ion thermal transport appears to be low

- $T_i > T_e$ when most of the beam heats the electrons
- Ion heat diffusivity $\chi_i \leq$ neoclassical (collisional) limit
- Ion power balance is difficult ($\chi_i << \chi_e$)

Impurity particle transport is low

- Injected neon does not penetrate into the core
- Near neoclassical diffusivity for r/a < 0.5
- Ion turbulent transport seems to be suppressed (talk by M. Redi)

Electron transport is dominant

- $\chi_e \gg \chi_i$, $D_{impurity}$ ($\chi_e \approx \chi_i \approx D_{impurity}$ in tokamaks)
- Stiff T_e profiles although beam heats electrons
- T_i profiles respond to increased P_{beam}

T_e profiles do not change with B at fixed B_t/I_p

- B_t , I_p scan at fixed B_t/I_P and beam power
- T_e, χ_e unaffected by large change in B
- Electron Temperature Gradient instability (ETG) driven transport?
- Strong ETG instability predicted in these discharges

Electron transport can be reduced in NSTX

- χ_e decreases when negative magnetic shear is inferred
- ETG suppression by negative shear predicted in NSTX

- χ_i , D_{neon} close to neoclassical suggest turbulent ion transport suppressed in NSTX, as predicted
- Further experiments to determine whether intrinsic, ExB, or magnetic shear suppression (important for reactor)
- Strong, field independent electron transport
- ETG instability at play ?
- Improved electron confinement seems possible with negative shear
- Understanding and improving electron confinement in NSTX may lead to more economical fusion reactor