ARIES-AT: An Advanced Tokamak, Advanced Technology Fusion Power Plant

Farrokh Najmabadi University of California, San Diego, La Jolla, CA, United States of America

ARIES Research Framework: Identify Key R&D Issues and Provide a Vision for Fusion Research

ARIES Designs Are Developed Based on a Reasonable Extrapolation of Physics & Technology

ARIES Rules

- Plasma regimes of operation are optimized based on latest experimental achievements and/or "well-founded" theoretical predictions.
- Engineering system is based on "evolution" of present-day technologies, *i.e.*, they should be available at least in small samples now. Only learning-curve cost credits are assumed in costing the system components.

Optimization involves trade-off among Physics and Engineering <u>constraints and parameters</u>

- > Trade-off between vertical stability and plasma shape (and β) and fusion core configuration and blanket thickness.
- Trade-off between plasma edge condition and plasma facing components capabilities

Customer Requirements

Top-Level Requirements for Fusion Power Plants Was Developed in Consultation with US Industry

Public Acceptance:

- > No public evacuation plan is required: total dose < 1 rem at site boundary;
- Generated waste can be returned to environment or recycled in less than a few hundred years (not geological time-scale);
- ➢ No disturbance of public's day-to-day activities;
- ➢ No exposure of workers to a higher risk than other power plants;

Reliable Power Source:

- Closed tritium fuel cycle on site;
- ➢ Ability to operate at partial load conditions (50% of full power);
- > Ability to maintain power core (availability > 80%);
- > Ability to operate reliably with < 0.1 major unscheduled shut-down per year.
- Economic Competitiveness: Above requirements must be achieved <u>simultaneously</u> and consistent with a competitive life-cycle cost of electricity.

Directions for Optimization

Translation of Requirements to GOALS for Fusion Power Plants

Requirements:

presen

trom

extrapolation

arger

> Have an economically competitive life-cycle cost of electricity:

- Low recirculating power (Increase plasma Q, ...);
- High power density (Increase $P_f \sim \beta^2 B_T^4, ...)$
 - High thermal conversion efficiency;
 - Less-expensive systems.

COE has a "hyperbolic" dependence ($\propto 1/x$) and improvements "saturate" after certain limit

Stay close to present-day

- Gain Public acceptance by having excellent safety and environmental characteristics:
 - Use low-activation and low toxicity materials and <u>care in design</u>.

> Have operational reliability and high availability:

- Ease of maintenance
- Design margins, and extensive R&D.
- Acceptable cost of development.

There Is Little Economic Benefit for Operating Beyond ~ 5 MW/m² of Wall Load (for 1000MWe)

Simple analysis for a cylindrical plasma with length L:

Wall loading $I_w \propto 1/r$ Hyperbolic
dependence Δ is set by neutron mfp \bigvee
 $F_{PPC} = \pi L (2r\Delta + \Delta^2)$ For $r >> \Delta$, $V_{FPC} \cong 2 \pi Lr\Delta \propto 1 / I_w$ For $r << \Delta$, $V_{FPC} \cong 2 \pi L \Delta^2 \cong const.$ "Knee of the curve" is at $r \cong \Delta$

- Physics & Engineering constraints cause departure from geometrical dependence *e.g.*, high field needed for high load increases TF cost.
- ARIES-AT optimizes at lower wall loading because of high efficiency.

Continuity of ARIES research has led to the progressive refinement of research

ARIES-I (1990):

- Trade-off of β with bootstrap
- High-field magnets to compensate for low β

ARIES-II/IV, 2nd Stability (1992):

- High β only with too much bootstrap
- Marginal reduction in current-drive power

ARIES-RS, reverse shear (1996):

- Improvement in β and current-drive power
- Approaching COE insensitive of power density

ARIES-AT, reverse shear (2000):

- Approaching COE insensitive of current-drive
- High β is used to reduce toroidal field

Need high β equilibria with high bootstrap

Need high β equilibria with aligned bootstrap

Better bootstrap alignment More detailed physics

Improved Physics

Evolution of ARIES Designs

	<u>1st Stability,</u>	<u>High-Field</u>	High-FieldReverse ShearOptionOption	
	<u>Nb₃Sn Tech.</u>	<u>Option</u>		
	ARIES-I'	ARIES-I	ARIES-RS	ARIES-AT
Major radius (m)	8.0	6.75	5.5	5.2
β (β _N)	2% (2.9)	2% (3.0)	5% (4.8)	9.2% (5.4)
Peak field (T)	16	19	16	11.5
Avg. Wall Load (MW/m ²)	1.5	2.5	4	3.3
Current-driver power (MW)	237	202	81	36
Recirculating Power Fraction	0.29	0.28	0.17	0.14
Thermal efficiency	0.46	0.49	0.46	0.59
Cost of Electricity (c/kWh)	10	8.2	7.5	5

Approaching COE insensitive of power density

Approaching COE insensitive of current drive

ARIES-AT Physics Analysis

ARIES-AT: Physics Highlights

- We used the lessons learned in ARIES-ST optimization to reach a higher performance plasma;
 - * Using > 99% flux surface from free-boundary plasma equilibria rather than 95% flux surface used in ARIES-RS leads to larger elongation and triangularity and higher stable β.
- > ARIES-AT blanket allows vertical stabilizing shell closer to the plasma, leading to higher elongation and higher β .
- Detailed stability analysis indicated that H-mode pressure & current profiles and X-point improves ballooning stability.
- A kink stability shell ($\tau = 10 \text{ ms}$), 1 cm of tungsten behind the blanket, is utilized to keep the power requirements for n = 1 resistive wall mode feedback coil at a modest level.

ARIES-AT: Physics Highlights

- We eliminated HHFW current drive and used only lower hybrid for off-axis current drive.
- Self-consistent physics-based transport simulations indicated the optimized pressure and current profiles can be sustained with a peaked density profile.
- A radiative divertor is utilized to keep the peak heat flux at the divertor at ~ 5 MW/m².
- > Accessible fueling; No ripple losses; 0-D consistent startup; *etc*.

As a whole, we performed detailed, self-consistent analysis of plasma MHD, current drive, transport, and divertor (using finite edge density, finite p', impurity radiation, *etc.*)

The ARIES-AT Equilibrium is the Results of Extensive ideal MHD Stability Analysis

> Pressure profiles scans show the interplay between plasma β and bootstrap alignment – optimum profiles are NOT at the highest β .

Intermediate n kink sets the wall location
 ARIES-AT plasma operates at 90% of theoretical β limit.

Vertical Stability and Control is a Critical Physics/Engineering Interface

TSC nonlinear dynamic simulations of vertical stability and feedback control show the tradeoff of power and accessible plasmas

Major Plasma Parameters of ARIES-AT

Aspect ratio	4.0
Major toroidal radius (m)	5.2
Plasma minor radius (m)	1.3
Plasma elongation (κ_x)	2.2
Plasma triangularity (δ_x)	0.84
Toroidal β [‡]	9.2%
Normalize β_N [‡]	5.4
Electron density (10^{20} m^{-3})	2.3
ITER-89P scaling multiplier	2.6
Plasma current	13
On-axis toroidal field (T)	6
Current-drive power to plasma (MW)	36

[‡] ARIES-AT plasma operates at 90% of maximum theoretical limit

ARIES-AT Engineering Analysis

ARIES-AT Fusion Core

Fusion Core Is Segmented to Minimize the Rad-Waste

ARIES-I Introduced SiC Composites as A High-Performance Structural Material for Fusion

- Excellent safety & environmental characteristics (very low activation and very low afterheat).
- ➢ High performance due to high strength at high temperatures (>1000°C).
- Large world-wide program in SiC:
 - * New SiC composite fibers with proper stoichiometry and small O content.
 - * New manufacturing techniques based on polymer infiltration results in much improved performance and cheaper components.
 - Recent results show composite thermal conductivity (under irradiation) close to 15 W/mK which was used for ARIES-I.

Continuity of ARIES research has led to the progressive refinement of research

ARIES-I:

- SiC composite with solid breeders
- Advanced Rankine cycle

Starlite & ARIES-RS:

- Li-cooled vanadium
- Insulating coating

ARIES-ST:

- Dual-cooled ferritic steel with SiC inserts
- Advanced Brayton Cycle at $\geq 650 \text{ }^{\circ}\text{C}$

ARIES-AT:

- LiPb-cooled SiC composite
- Advanced Brayton cycle with $\eta = 59\%$

Many issues with solid breeders; Rankine cycle efficiency saturated at high temperature

Max. coolant temperature limited by maximum structure temperature

High efficiency with Brayton cycle at high temperature

Improved Blanket Technology

Advanced Brayton Cycle Parameters Based on Present or Near Term Technology Evolved with Expert Input from General Atomics*

- Min. He Temp. in cycle (heat sink) = 35°C
- 3-stage compression with 2 intercoolers
- Turbine efficiency = 0.93
- Compressor efficiency = 0.88
- Recuperator effectiveness (advanced design) = 0.96
- Cycle He fractional $\Delta P = 0.03$
- Intermediate Heat Exchanger
 - Effectiveness = 0.9
 - $(mCp)_{He}/(mCp)_{Pb-17Li} = 1$

> Key improvement is the development of cheap, high-efficiency recuperators.

*R. Schleicher, A. R. Raffray, C. P. Wong, "An Assessment of the Brayton Cycle for High Performance Power Plant," 14th ANS Topical Meeting on Technology of Fusion Energy, October 15-19, 2000, Park City Utah

Recent Advances in Brayton Cycle Leads to Power Cycles With High Efficiency

ARIES-AT: SiC Composite Blankets

- Simple, low pressure design with SiC structure and LiPb coolant and breeder.
- Innovative design leads to high LiPb outlet temperature (~1,100°C) while keeping SiC structure temperature below 1,000°C leading to a high thermal efficiency of ~ 60%.
- Simple manufacturing technique.
- Very low afterheat.
- ➢ Class C waste by a wide margin.
- LiPb-cooled SiC composite divertor is capable of 5 MW/m² of heat load.

Develop Plausible Fabrication Procedure and Minimize Joints in High Irradiation Region

- 1. Manufacture separate halves of the SiC_f/SiC poloidal module by SiC_f weaving and SiC Chemical Vapor Infiltration (CVI) or polymer process;
- 2. Manufacture curved section of inner shell in one piece by SiC_f weaving and SiC Chemical Vapor Infiltration (CVI) or polymer process;
- 3. Slide each outer shell half over the free-floating inner shell;
- 4. Braze the two half outer shells together at the midplane;
- 5. Insert short straight sections of inner shell at each end;

Lap joint

Double lap joint

reliable

area

joint contact

Tapered butt joint

Multi-Dimensional Neutronics Analysis to Calculate Tritium Breeding Ratio and Heat Generation Profiles

- Latest data and code
- 3-D tritium breeding > 1.1 to account for uncertainties
- Blanket configuration and zone thicknesses adjusted accordingly
- Blanket volumetric heat generation profiles used for thermal-hydraulic analyses

Innovative Design Results in a LiPb Outlet Temperature of 1,100°C While Keeping SiC Temperature Below 1,000°C

Details of Thermal Analysis of ARIES-AT First Wall Channel and Inner Channel

Model Description:

- Assume MHD-flowlaminarization effect
- Use plasma heat flux poloidal profile
- Use volumetric heat generation poloidal and radial profiles
- Iterate for consistent boundary conditions for heat flux between Pb-17Li inner channel zone and first wall zone
- Calibration with ANSYS 2-D results

Parameters → PbLi Inlet Temperature = 764 °C → PbLi Outlet Temperature = 1,100 °C

Radial build (from plasma side:)
➢ CVD SiC Thickness = 1 mm
➢ SiC_f/SiC Thickness = 4 mm (SiC_f/SiC k = 20 W/m-K)
➢ PbLi Channel Thick. = 4 mm
➢ SiC/SiC Separator Thickness = 5 mm (SiC_f/SiC k = 6 W/m-K)

PbLi velocity in FW Channel= 4.2 m/s
PbLi velocity in inner Channel = 0.1 m/s

ARIES-AT Outboard Blanket Parameters

Number of Segments	32
Number of Modules per Segment	б
Module Poloidal Dimension	6.8 m
Average Module Toroidal Dimension	0.19 m
First Wall SiC _f /SiC Thickness	4 mm
First Wall CVD SiC Thickness	1 mm
First Wall Annular Channel Thickness	4 mm
Average Pb-17Li Velocity in First Wall	4.2 m/s
First Wall Channel Re	3.9 x 10 ⁵
First Wall Channel Transverse Ha	4340
MHD Turbulent Transition Re	2.2 x 10 ⁶
First Wall MHD Pressure Drop	0.19 MPa
Maximum SiC _f /SiC Temperature	996°C
Maximum CVD SiC Temperature	1,009 °C
Maximum Pb-17Li/SiC Interface Temperature	994°C
Average Pb-17Li Velocity in Inner Channel	0.11 m/s

Multi-Dimensional Neutronics Analysis was Performed to Calculate TBR, activities, & Heat Generation Profiles

- Very low activation and afterheat Lead to excellent safety and environmental characteristics.
- All components qualify for Class-C disposal under NRC and Fetter Limits. 90% of components qualify for Class-A waste.
- On-line removal of Po and Hg from LiPb coolant greatly improves the safety aspect of the system and is relatively straight forward.

Major Engineering Parameters of ARIES-AT

Fusion power (MW)	1,755
Energy Multiplication, M	1.1
Thermal Power (MW)	1,897
Peak/Avg. first wall heat flux (MW/m ²)	0.34/0.26
Peak/Avg. neutron wall load (MW/m ²)	4.9/3.3
LiPb coolant outlet temperature (°C)	1,100
Thermal efficiency	0.59
Gross electric power (MW)	1,136
Recirculating power fraction	0.14
Cost of electricity (c/kWh)	5

ARIES-AT Toroidal-Field Magnets

On-axis toroidal field: 6 T
Peak field at TF coil: 11.4 T

Use of High-Temperature Superconductors Simplifies the Magnet Systems

- HTS does not offer significant superconducting property advantages over low temperature superconductors due to the low field and low overall current density in ARIES-AT
- ➢ HTS does offer <u>operational</u> advantages:
 - * Higher temperature operation (even 77K), or dry magnets
 - Wide tapes deposited directly on the structure (less chance of energy dissipating events)
 - Reduced magnet protection concerns
- and potential significant cost advantages
 Because of ease of fabrication using advanced manufacturing techniques

ARIES-AT Uses a Full-sector Maintenance Scheme and a High Availability Is Predicted

Plan View of ARIES-AT Power Core(1/16 Sector)

Plan View of Showing the Removable Sector Being Withdrawn

Power Core Removal Sequence

- Cask contains debris and dust
- Vacuum vessel door removed and transported to hot cell
- Core sector replaced with refurbished sector from hot cell
- Vacuum vessel door reinstalled
- Multiple casks and transporters can be used

Our Vision of Magnetic Fusion Power Systems Has Improved Dramatically in the Last Decade, and Is Directly Tied to Advances in Fusion Science & Technology

10

9-8-

7

6

5-

3-

2

Mid 80's

Pulsar

Early 90's

ARIES-I

Estimated Cost of Electricity (c/kWh)

Present ARIES-A	AT parameters:	
Major radius:	5.2 m	Fusion Power
Toroidal β:	9.2%	Net Electric
Wall Loading:	4.75 MW/m^2	COE

2000

ARIES-AT

Late 90's

ARIES-RS

ARIES-AT is Competitive with Other Future Energy Sources

Estimated range of COE (c/kWh) for 2020*

Impact of \$100/ton Carbon Tax.

- Estimates from Energy Information Agency Annual Energy Outlook 1999 (No Carbon tax).
- * Data from Snowmass Energy Working Group Summary.

Main Features of ARIES-AT² (Advanced Technology & Advanced Tokamak)

- High Performance Very Low-Activation Blanket: New hightemperature SiC composite/LiPb blanket design capable of achieving ~60% thermal conversion efficiency with small nucleargrade boundary and excellent safety & waste characterization.
- Higher Performance Physics: reversed-shear equilibria have been developed with up to 50% higher β than ARIES-RS and reduced current-drive power.
- The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity which is competitive with those projected for other sources of energy.