Physics in ARIES Tokamak Power Plant Design

<u>C. E. Kessel, for the ARIES Physics Team</u> Princeton Plasma Physics Laboratory

9th Course on Technology of Fusion Tokamak Reactors, Erice, Italy, July 2004

ARIES Has Examined Several Physics Configurations

ARIES-I ($q_0 = 1.3$, dq/dr > 0) $\beta_{\rm N} \leq 3, \ |_{\rm NI}/|_{\rm P} = 100\%, \ \beta = 2\%,$ 8 $B_T = 9 T, P_{CD} \ge 200 MW$ **PULSAR** ($q_0 \approx 1$, dq/dr > 0) 6 $\beta_{\rm N} \leq 3$, $I_{\rm NI} / I_{\rm P} \leq 35\%$, $\beta = 2.8\%$, 4 $B_{T} = 7 T, P_{CD} = 0 MW$ ARIES-II/IV $(q_0=2, dq/dr > 0)$ 2 $\beta_{\rm N} \approx 5.9, \ I_{\rm NI}/I_{\rm P} \ge 100\%, \ \beta = 3.4\%,$ $B_T = 7.85 \text{ T}, P_{CD} \le 200 \text{ MW}$ Е Ø Ń ARIES-RS ($q_0 = 2.5$, dq/dr < 0) $\beta_{\rm N} \approx 5.4, \ I_{\rm NI}/I_{\rm P} = 100\%, \ \beta = 5.1\%,$ -2 $B_{T} = 8 T, P_{CD} \le 100 MW$ ARIES-AT ($q_0 = 3.5$, dq/dr < 0) -4 $\beta_{\rm N} \approx 6.0, \ I_{\rm NI}/I_{\rm p} = 100\%, \ \beta = 10.5\%,$ -6 $B_{T} = 5.6 \text{ T}, P_{CD} \ge 40 \text{ MW}$ ARIES-ST (A = 1.6)-80 \square $\beta_{\rm N} \approx 8.3, \ I_{\rm NI}/I_{\rm P} = 100\%, \ \beta = 60\%,$ $B_T = 2.14 \text{ T}, P_{CD} = 31 \text{ MW}$ P_{electric} = 1000 MW

ARIES-AT

Ip = 12.8 MA $B_{T} = 5.86 T$ R = 5.2 ma = 1.3 m $\kappa_{x} = 2.2$ $\delta_x = 0.9$ $\beta_{\rm D} = 2.28$ $\beta = 9.1\%$ $\beta_{\rm N} = 5.4 \ (\beta_{\rm N}^{\rm max} = 6.0)$ $q_{axis} = 3.5$ **q**_{min} = **2.4** $q_{edge} \le 4$ $f_{bs} = 0.89$ li(3) = 0.3 $p_0/\langle p \rangle = 1.9$

Specific Plasma Configuration Determines the Trade-Offs in Physics Design

Talk Outline

Equilibria Ideal MHD Stability Neoclassical Tearing Modes Heating & Current Drive Plasma Rotation Vertical Stability and Control PF Coil Optimization Plasma Transport Comparison Plasma Edge/SOL/Divertor Fueling Ripple Losses Other Physics Issues & Analysis

Increase $P_{fus}/V_p \propto \beta^2 B^4$ Decrease $P_{recirc} \approx P_{CD} \approx (1-f_{BS})I_P / \zeta_{CD}$ $q^* = 2$ $q^* = 3$.09 RS 3A/S (α Plasma β) .08 .07 SS .06 PU a* = 5 .05 .04 .03 .02 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 β_n / A (\propto Bootstrap current fraction)

Develop as comprehensive a physics description as possible

Identify high leverage physics for improving fusion viability and competitiveness

High Accuracy Equilibria are Essential to Assess Stability

JSOLVER fixed boundary flux coordinate equilibria

High resolution ($257\psi \times 257\theta$)

 $p(\psi)$ and \langle j•B \rangle are input

Includes bootstrap current, multiple CD sources, and loop voltage self-consistently

Plasma boundary determined from free-boundary equilibria with same profiles, at ≈ 99.5% flux surface

Iterate between RF,NB analysis and equilibria

Equilbria Are Produced to Provide Input to RF, Stability and Systems Studies

Extensive Ideal MHD Stability Analysis

Low-n kink and high-n ballooning stability

PEST2 for $1 \le n \le 9$ BALMSC for $n = \infty$ ELITE for $10 \le n \le 30$ (ELMs) MARS for n=1, 2 rotation

Examine the impact of plasma shape, aspect ratio, and j-profiles and p-profiles

Determine maximum β_N(n=∞)

Determine conducting wall location for low-n stabilization (with rotation or feedback)

Plasma Elongation and Triangularity Strongly Influence Achievable β

Similar wall

modes and

location for kink

Kink stability at corresponding maximum ballooning β_N , with varying triangularity

MARS Analysis Indicates $V_{\phi} \le 0.09V_{Alfven}$, So ARIES-AT Relies on RWM Feedback

Neoclassical Tearing Modes Must be Stabilized to Access Ideal MHD Limits

Heating and Current Drive Analysis

Determine viable CD schemes and determine CD power requirement

CURRAY ray-tracing for ICRF, LHCD, and HHFW

NFREYA for NB

Establish CD source and launcher requirements (ω , n_{II} , Δn_{II} , θ_{RF} , E_{beam} , R_{tan} , θ_{beam})

Examine effects of T_e, Z_{eff}, L or Hmode edge

CD power contributes to recirculating power, so minimized while maintaining some CD for j control

ARIES-AT Utilizes ICRF/FW and LHCD

Alternate CD Sources are Examined for Current Profile Control and Rotation

120 keV NBI provides plasma rotation and CD for $\rho > 0.6$, P_{NB} = 44 MW, P_{FW} = 5 MW (NFREYA)

HHFW at $20\omega_{ci}$ provides current at $\rho > 0.7$ - 0.9, $P_{LH} = 20$ MW, $P_{HHFW} = 20$ MW, $P_{FW} = 5$ MW

Heating and CD Analysis Show the Impact of β_N , Z_{eff} , and T_e

Plasma Rotation is Probably Too Small for RWM Stabilization

$$\frac{m_i \langle v_{\phi} \rangle}{\tau_E} \approx \frac{P_b (2m_b / E_b)^{1/2}}{V_p \langle n_i \rangle}$$

gives about 82 km/sec, which is 1.6% of the Alfven speed

XPTOR (GLF23) in conjunction with ONETWO estimates that the plasma rotation near or outside q_{min} will be very small

Examination of the rotation provided by IC heating off-axis indicates this mechanism is not effective, although there is considerable uncertainty in modeling Plasma rotation profile generated by ICH deposition at $\rho = 0.34$, with volume integrated torque density equal 0

Vertical Stability Analysis Shows $\kappa_x = 2.2$ is Possible for ARIES-AT

ARIES-RS had $\kappa_x = 1.9$, neutronics indicated the conducting structures could be closer to plasma in ARIES-AT yielding $\kappa_x^{max} = 2.2$

Vertical Stability and Control of Final Design Show Viable Operating Space

PF Coil Optimization Shows All Coil Currents Below 10 MA in ARIES-AT

All accessible PF coil locations are filled with coils, and one by one, are eliminated in order to yeild the least increase in ΣRI^2

Examine Transport Assumptions Against GLF23 Predictions

- 1) Agreement is good for the assumed ARIES-AT profiles, however improved transport is due to Shafranov shift not ExB shear, ion transport above neoclassical
- 2) Very broad density profile produces 30% reduction in electron and ion temperatures, profiles are similar
- 3) Very broad density profile in combination with plasma rotation similar to DIII-D recovered temperatures, but still did not suppress all ITG turbulence

Need expt's with no external momentum input to benchmark GLF23 predictions for dq/dr < 0 and Shafranov shift stabilization

Plasma Edge/SOL/Divertor Solution Must Satisfy Physics & Engr. Constraints

Enhancing Radiated Power is Critical to Power Handling

$$Q_{div}^{peak} \approx \frac{P_{SOL}(1-f_{rad})f_{pow}^{OB}f_{\nabla B}(1-f_{priv})\sin\alpha}{2\pi R_{strk}f_{exp}\Delta_{SOL}}$$

$$\Delta_{SOL}^{L} = 6.6 \times 10^{-4} R^{1.21} q_{95}^{0.59} n_{L}^{0.54} Z_{eff}^{0.61} P_{div}^{-0.19}$$

$$\approx 1.4 - 2.1cm$$

$$\Delta_{SOL}^{H} = 5.2 \times 10^{-3} P_{div}^{0.44} q_{95}^{0.57} B_{T}^{-0.45}$$

$$\approx 3.8cm$$

Convert these "integral power width" to width of steepest decay near the separatrix, divide by 1.8

$$\Delta_{SOL} = 0.8-2.1 \text{ cm}, \text{ use } 1.2 \text{ cm} \text{ in}$$

analysis

cm cm

Balancing Radiated Power Distribution to Produce Optimal Power Handling

f core	Q _{FW} ^{peak}	f _div	Q div ^{peak,OB}	Q _{div} peak,IB	f _{Ar} ^{core} ,f _{Ar} ^{div}
30%	0.37 MW/m ²	0%	14.3 MW/m ²	3.4 MW/m ²	0, 0%
36%	0.45	0	13.0	3.1	0.18, 0
75%	0.90	0	5.0	1.2	0.35, 0
36%	0.45	43	5-6	1.3	0.18, 0.26

Radiated power distributions

Controlling Impurity Distributions to Achieve the Best Radiation Distribution

Fueling Must Reach Inside ITB With Reasonable Pellet Velocities

Recent advances in <u>High Field Side pellet launching</u> show that much lower velocities are required to access the plasma core, but guide tube must reach IB or vertical access

Low Field Side Pellet Simulations for ARIES-RS

Ripple Losses are Small Due to Large Outboard TF Coil Distance Even with High q

 $R_{TF} / (R+a) = 1.7$ $b_{TF} / a = 3$ (measured from R+a)

Max ripple = 0.02% Prompt loss = 0.01% Ripple loss = 0.09% Full sector maintenance has a positive impact on physics

Other Physics Examinations Performed in ARIES Studies

0D Startup analysis, both including the solenoid and without the solenoid

Solenoid coils (IB) are made to provide $\Delta \psi$ to ramp up to lp Non-solenoidal current rampup involves bootstrap overdrive technique (heating to produce BS current, LH can be used to assist, current hole formation is likely) ----> leads to long rampup times 90-200 minutes

Disruptions and thermal transients (ELMs) assessment and analysis with DESIRE and A*THERMAL Identify operating space with acceptable PFC/divertor lifetime Very few disruptions allowed and low amplitude/high frequency ELMs necessary

L-H transition, global energy confinement scaling comparisons, and POPCON for thermal stability and startup

Since no detailed neutral particle/plasma edge analysis done, the particle control requirements are done in Engr. using particle balance and DIII-D expt. experience as part of Divertor design

Other Physics Issues That Significantly Impact Power Plant Design

Control of neutral particles can allow the plasma to operate above the Greenwald density limit (DIII-D and TEXTOR)

Helium particle control is demonstrated in pumped divertor experiments, $\tau_{He}^* / \tau_E \approx 3-5$ for H-mode, and $\approx 5-10$ for AT plasmas (DIII-D and JT-60U, ARIES assumes 10)

LHCD (Compass) or bulk current profile modifications (ASDEX & JET FIR-NTMs, DIII-D Hybrid discharges) have growing evidence as a viable method for NTM suppression

Vertical (at $R < R_o$) and **inboard** (HFS) pellet launch show better penetration with lower pellet velocities

Strongly shaped ---> DN plasmas access Type II ELMs, which significantly reduce the divertor heat load and erosion (JET and ASDEX-U)

Physics Analysis in Power Plant Studies is Continuing to Improve

Identify primary impacts of physics on power plant optimization

Fusion power density Recirculating power Self-consistency of overall configurations

<u>Understand trade-offs among plasma configurations</u>

Pulsed vs steady state With and without wall stabilization of kink mode Inductive and non-inductive CD

Enable improved solutions thru physics/engineering interactions

Conductor/stabilizers Radiative mantle/divertors

Understand the difference between a physics optimization and an integrated systems optimization